Towards Certifying ℓ_∞ Robustness using Neural Networks with $\ell_\infty\text{-dist}$ Neurons

Bohang Zhang, Tianle Cai, Zhou Lu, Di He, Liwei Wang

Peking University, Princeton University, Microsoft Research

June 20, 2021

Index

Introduction

2 Existing Approaches

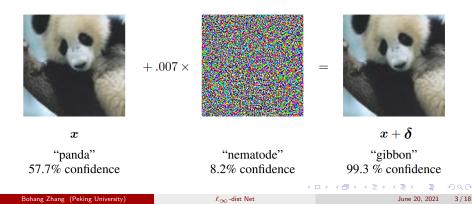
3 Certified ℓ_{∞} Robustness via ℓ_{∞} -dist Net

- An 1-Lipschitz Network: ℓ_{∞} -dist Net
- \bullet Theoretical Properties of $\ell_\infty\text{-dist}$ Nets
- 4 Training ℓ_{∞} -dist Nets
- 5 Experiments & Results
 - Conclusion

< □ > < □ > < □ > < □ > < □ >

Introduction

- Modern neural networks are usually sensitive to small, adversarially chosen perturbations to the inputs.
- Given an image x, an indistinguishable small adversarial perturbation δ is able to fool the classifier f to produce a wrong class using $f(x + \delta)$.
 - We focus on ℓ_{∞} -norm bounded perturbations, i.e. $\|\delta\|_{\infty} \leq \epsilon$.



Existing Approaches

- To improve models' robustness to adversarial examples, many attempts have been made.
- Adversarial training methods:
 - First generate on-the-fly adversarial examples, then train model parameters using these perturbed samples together with the original labels.
 - Can achieve decent empirical robustness against some particular attack methods (e.g. PGD), but cannot give formal (certified) guarantees.
- Training provably robust models:
 - Calculate certified radius provided by robust certification methods (typically based on convex relaxation), then train models to maximize such certified radius.
 - Drawbacks: sophisticated to implement and computationally expensive.

イロト イボト イヨト イヨト

Existing Approaches

- Randomized Smoothing:
 - If a Gaussian random noise is added to the input, a certified guarantee on small l₂ perturbation can be computed for Gaussian smoothed classifiers.
 - Can not achieve good results for relatively large ℓ_{∞} perturbations.
- Fundamentally different from these approaches, we propose a novel network that is inherently 1-Lipschitz with respect to ℓ_∞ -norm, and that can provide ℓ_∞ robustness guarantee by its nature.

ℓ_∞ -dist Neuron

• We introduce a new type of neuron called $\ell_\infty\text{-dist}$ neuron, using ℓ_∞ distance as the basic operation:

$$u(\boldsymbol{z}, \theta) = \|\boldsymbol{z} - \boldsymbol{w}\|_{\infty} + b$$

- $\theta = \{w, b\}$ is the parameter set.
- There is no need to further apply a non-linear activation function since the neuron itself is non-linear.
- Similar to dot-product, ℓ_∞ -distance is also a similarity measure. A smaller ℓ_∞ -distance indicates a stronger similarity.
- Contrast to the conventional neuron, if the perturbation $\|\delta\|_{\infty} \leq \epsilon$, y can change at most ϵ .

$$y = \|x - w\|_{\infty} + b$$

ℓ_∞ -dist Net

- \bullet Using $\ell_\infty\text{-dist}$ Neuron, we can construct $\ell_\infty\text{-dist}$ net.
- For example, consider a simple MLP network as follows:
 - The network takes $x^{(0)}$ as input.
 - ► The *k*-th unit in the *l*-th hidden layer $x_k^{(l)}$ is computed by $x_k^{(l)} = u(\boldsymbol{x}^{(l-1)}, \theta^{(l,k)}) = \|\boldsymbol{x}^{(l-1)} \boldsymbol{w}^{(l,k)}\|_{\infty} + b^{(l,k)}.$
 - The network outputs $x^{(L)}$.
- We can similarly consider other neural network architectures, such as convolutional networks with weight sharing.
- For classification tasks, $x^{(L)} \in \mathbb{R}^C$, and we can apply any standard loss function on the ℓ_{∞} -dist net, such as the cross-entropy loss or hinge loss.

イロト イポト イヨト イヨト

Lipschitzness of ℓ_{∞} -dist Net

• Recall a function $g(z) : \mathbb{R}^m \to \mathbb{R}^n$ is called λ -Lipschitz with respect to ℓ_p -norm $\|\cdot\|_p$, if for any z_1, z_2 , the following holds:

$$\|\boldsymbol{g}(\boldsymbol{z}_1) - \boldsymbol{g}(\boldsymbol{z}_2)\|_p \leq \lambda \|\boldsymbol{z}_1 - \boldsymbol{z}_2\|_p.$$

- $\bullet~\ell_\infty\text{-dist}$ is 1-Lipschitz with respect to $\ell_\infty\text{-norm}$
 - First, ℓ_{∞} -dist neuron is 1-Lipschitz;
 - ▶ Then the mapping from one layer to the next layer $x^{(\ell)} o x^{(\ell+1)}$ is 1-Lipschitz;
 - Finally, the whole network is 1-Lipschitz by composition.

イロト イボト イヨト イヨト

How to Compute Certified Robustness

- The Lipschitz property can be used to certify robustness as follows:
 - Let $f(x) = \arg \max_{i}$ and x is correctly classified. Define $\operatorname{margin}(x; g)$ as the difference between the largest and second-largest elements of g(x). Then the certified robust radius is at least $\operatorname{margin}(x; g)/2$.
- Note that the certification process is very efficient (only a forward pass required).

The expressive power of ℓ_{∞} -dist Nets

• Since ℓ_{∞} -dist nets is Lipschitz with respect to ℓ_{∞} -norm, it is natural to ask whether ℓ_{∞} -dist nets can approximate *any* 1-Lipschitz function.

Theorem (Lipschitz-Universal Approximation Theorem for ℓ_{∞} -dist Nets)

For any 1-Lipschitz function $\tilde{g}(\boldsymbol{x})$ (with respect to ℓ_{∞} -norm) on a bounded domain $\mathbb{K} \in \mathbb{R}^{d_{\text{input}}}$ and any $\epsilon > 0$, there exists an ℓ_{∞} -dist net $g(\boldsymbol{x})$ with width no more than $d_{input} + 2$, such that for all $\boldsymbol{x} \in \mathbb{K}$, we have $\|g(\boldsymbol{x}) - \tilde{g}(\boldsymbol{x})\|_{\infty} \leq \epsilon$.

This theorem implies that an ℓ_∞-dist net can approximate any
 1-Lipschitz function with respect to ℓ_∞-norm on a compact set, using width barely larger than the input dimension.

(日)

The robust generalization ability of ℓ_{∞} -dist Nets

- $\bullet\,$ The remaining question is whether $\ell_\infty\text{-dist}$ nets can generalize well on unseen test data.
- Consider the following two-class classification problem: let $(x, y) \sim \mathcal{D}$ be an instance-label couple where $y \in \{1, -1\}$. For a function $g(x) : \mathbb{R}^{d_{\text{input}}} \to \mathbb{R}$, we use sign(g(x)) as the classifier. The *r*-robust test error γ_r of a classifier g is defined as

$$\gamma_r = \mathbb{E}_{\mathcal{D}} \left[\sup_{\|\boldsymbol{x}' - \boldsymbol{x}\|_{\infty} \leq r} \mathbb{I}_{yg(\boldsymbol{x}') \leq 0} \right]$$

The robust generalization ability of ℓ_{∞} -dist Nets

Theorem (Robust Generalization Error of ℓ_{∞} -dist Nets)

Let \mathbb{F} denote the set of all g represented by an ℓ_{∞} -dist net with width W and depth L. For every t > 0, with probability at least $1 - 2e^{-2t^2}$ over the random drawing of n samples, for all r > 0 and $g \in \mathbb{F}$ we have that

$$\gamma_r \leq \inf_{\delta \in (0,1]} \left[\frac{1}{n} \sum_{i=1}^n \underbrace{\mathbb{I}_{y_i g(x_i) \leq \delta + r}}_{\text{large training margin}} + \underbrace{\tilde{O}\left(\frac{LW^2}{\delta\sqrt{n}}\right)}_{\text{network size}} + \left(\frac{\log \log_2(\frac{2}{\delta})}{n}\right)^{\frac{1}{2}} \right] + \frac{t}{\sqrt{n}}.$$
(1)

• This theorem demonstrates that when a large margin classifier is found on training data, and the size of the ℓ_{∞} -dist net is not too large, then with high probability, the model can generalize well in terms of adversarial robustness.

Training ℓ_{∞} -dist Nets

- We empirically find that the optimization is challenging and directly training the network usually *fails* to obtain a good performance.
- Furthermore, as this architecture is entirely new, the tricks and techniques for conventional network training may not be appropriate in our setting.

Normalization

- The output of an $\ell_\infty\text{-dist}$ neuron is biased (always being non-negative, assuming no bias term).
- This will cause the output scale in upper layers linearly increase.
- However, we can not apply batch normalization in ℓ_{∞} -dist nets, since the Lipschitz constant will change due to the scaling operation, and the robustness of the model cannot be guaranteed.
- Fortunately, we find that using the shift operation alone already helps the optimization.
- Similar to BatchNorm, we use the running mean during inference, which serves as additional bias terms in ℓ_∞ -dist neurons and does not affect the Lipschitz constant of the model.

イロト 不得 トイヨト イヨト

Smoothed Approximated Gradients

- Another optimization difficulty: the gradients of the ℓ_{∞} -dist operation are very **sparse** which typically contain only one non-zero element.
- In practice, we observe that there are less than 1% parameters updated in an epoch if we directly train the ℓ_∞ -dist net using SGD/Adam from random initialization.
- To improve the optimization, we relax the ℓ_{∞} -dist neuron by using the ℓ_p -dist neuron for the whole network to get an approximate and non-sparse gradient of the model parameters.
- During training, we set p to be a small value in the beginning and increase it in each iteration until it approaches infinity. For the last few epochs, we set p to infinity and train the model to the end.

イロト イヨト イヨト イヨト

Experiments & Results

Dataset	Method	FLOPs	Test	Robust	Certified
$MNIST$ ($\epsilon = 0.3$)	Group Sort (Anil et al., 2019)	2.9M	97.0	34.0	2.0
	COLT (Balunovic & Vechev, 2020)	4.9M	97.3	-	85.7
	IBP (Gowal et al., 2018)	114M	97.88	93.22	91.79
	CROWN-IBP (Zhang et al., 2020b)	114M	98.18	93.95	92.98
	ℓ_{∞} -dist Net	82.7M	98.54	94.71	92.64
	ℓ_{∞} -dist Net+MLP	85.3M	98.56	95.28	93.09
Fashion MNIST $(\epsilon = 0.1)$	CAP (Wong & Kolter, 2018)	0.41M	78.27	68.37	65.47
	IBP (Gowal et al., 2018)	114M	84.12	80.58	77.67
	CROWN-IBP (Zhang et al., 2020b)	114M	84.31	80.22	78.01
	ℓ_∞ -dist Net	82.7M	87.91	79.64	77.48
	ℓ_{∞} -dist Net+MLP	85.3M	87.91	80.89	79.23
	PVT (Dvijotham et al., 2018a)	2.4M	48.64	32.72	26.67
	DiffAI (Mirman et al., 2019)	96.3M	40.2	-	23.2
CIFAR-10	COLT (Balunovic & Vechev, 2020)	6.9M	51.7	-	27.5
$(\epsilon = 8/255)$	IBP (Gowal et al., 2018)	151M	50.99	31.27	29.19
	CROWN-IBP (Zhang et al., 2020b)	151M	45.98	34.58	33.06
	CROWN-IBP (loss fusion) (Xu et al., 2020a)	151M	46.29	35.69	33.38
	ℓ_{∞} -dist Net	121M	56.80	37.46	33.30
	ℓ_{∞} -dist Net+MLP	123M	50.80	37.06	35.42

Table 1. Comparison of our results with existing methods¹.

Bohang Zhang (Peking University)

< □ → < □ → < 直 → < 直 → < 直 → June 20, 2021 16/18

Experiments & Results

Method Model FLOPs Test Robust Certified CNN7+BN 458M 21.58 19.04 12.69 CROWN-IBP ResNeXt 64M 21.42 20.20 13.05 (loss fusion) DenseNet 575M 22.04 19.48 14.56 (Xu et al., 2020a) WideResNet 5.22G 15.86 27.86 20.52 ℓ_{∞} -dist Net+MLP 16.31 ℓ_{∞} -dist net 156M 21.82 18.09

Table 2. Comparison of our results with Xu et al. (2020a) on TinyImageNet dataset ($\epsilon = 1/255$).

Table 4. Comparison of per-epoch training speed for different methods on CIFAR-10 dataset.

Method	Per-epoch Time (seconds)		
IBP	17.4		
CROWN-IBP	112.4		
CROWN-IBP (loss fusion)	43.3		
ℓ_{∞} -dist Net	19.7		
ℓ_{∞} -dist Net+MLP	19.7		

< □ > < 同 > < 回 > < 回 >

Conclusion & Future Work

- \bullet We design a novel neuron that uses ℓ_∞ distance as its basic operation.
- We show that ℓ_{∞} -dwist net is naturally a 1-Lipschitz function with respect to ℓ_{∞} norm, which provides a theoretical guarantee of the certified robustness based on the margin of the prediction outputs.
- We further formally analyze the expressive power and the robust generalization ability of the network, and provide a holistic training strategy to handle optimization difficulties encountered in training ℓ_{∞} -dist nets.
- Experiments show promising results on MNIST, Fashion-MNIST, CIFAR-10 and TinyImageNet datasets.
- We hope this work can bring a new research direction in the area of certified robustness.

イロト イボト イヨト イヨト

Thank You!

< □ > < □ > < □ > < □ > < □ >