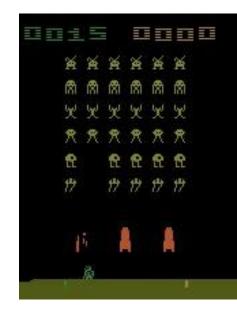
MetaCURE: Meta Reinforcement Learning with Empowerment-Driven Exploration

Jin Zhang*, Jianhao Wang*, Hao Hu, Tong Chen, Yingfeng Chen, Changjie Fan, Chongjie Zhang

IIIS, Tsinghua University

jin-zhan20@mails.tsinghua.edu.cn

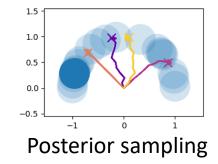
> Machine Intelligence Group

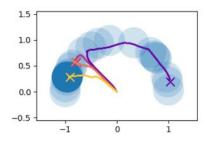


交叉信息研究院

Institute for Interdisciplinary Information Sciences

Motivation


- Humans are experts in transferring knowledge
- Meta learning (Schmidhuber, J. 1987):
 - Meta-training: gain useful knowledge from previous tasks
 - Adaptation: adapt to new tasks with few-shot data
- Meta-RL: how should we collect data in both phases?



Exploration in Meta-RL

- How to explore in a new task?
 - Curiosity-driven methods?
 - Task-irrelevant distractors

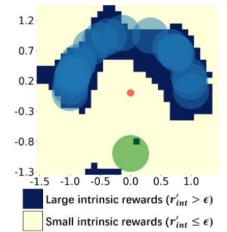
- Posterior sampling (Rakelly, Kate, et al. 2019)?
 - Exploitation policies may not explore effectively, as they are not optimized for exploration



Efficient exploration

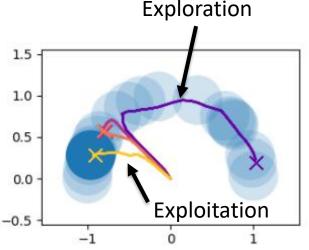
Empowerment-Driven Exploration

- Meta-RL as task inference (Humplik, Jan, et al. 2019):
 - $\pi(a|s,z), z$ is a latent variable containing task information.
- Exploration should support task inference.
 - Gain empowerment over the current task.
 - Objective: $\max I(C; \mathcal{K})$
 - C: exploration experience
 - *K*: task identification



Empowerment-Driven Exploration

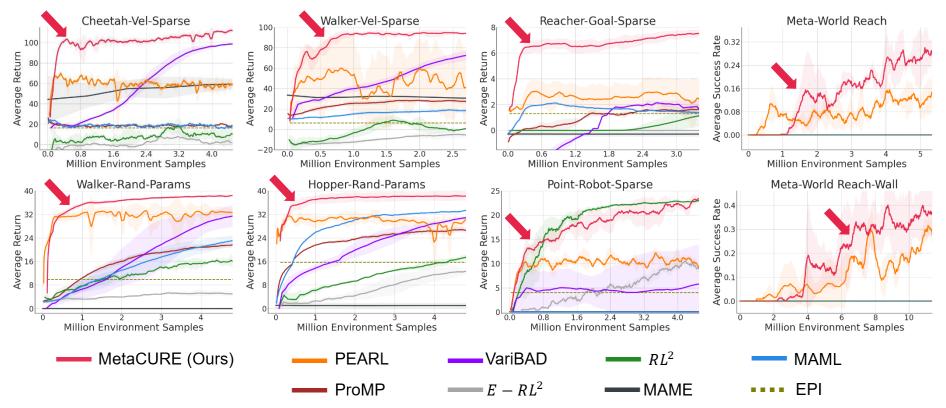
- Deriving intrinsic rewards
 - $\max I(C; \mathcal{K})$


•
$$r'_{int}(c_{:t+1},\kappa) = -\log p(r_t, s_{t+1}|c_{:t}, a_t) + \log p(r_t, s_{t+1}|c_{:t}, a_t, \kappa)$$

 $L_{pred}(c_{:t+1}) - L_{pred}^{task}(\kappa, c_t)$

- Subtraction of two model prediction errors!
 - L_{pred}: uncertainty given current experiences
 - L^{task}_{pred}: uncertainty given task identification
 - Implication: only focus on uncertainty that helps task inference

Separating Exploration and Exploitation


- Exploration and exploitation naturally obtain different objectives!
 - Exploration: obtain task information
 - Exploitation: maximize expected return

6

They should be two separate policies.

Results

Machine Intelligence Group, IIIS, Tsinghua University

Take-Aways

- MetaCURE addresses the exploration problem in Meta-RL.
- Empowerment-driven exploration:
 - Maximize MI between exploration experiences and the task identification
- Separation of exploration and exploitation policies
- These ideas lead to superior performance on various hard sparsereward Meta-RL benchmarks.

Thanks for your listening

Machine Intelligence Group

