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Motivation

= Humans are experts in transferring knowledge

= Meta learning (Schmidhuber, J. 1987):
» Meta-training: gain useful knowledge
from previous tasks
= Adaptation: adapt to new tasks with few-shot data

= Meta-RL: how should we collect data in both phases?
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Exploration in Meta-RL

= How to explore in a new task? .’&/’1
= Curiosity-driven methods? |
= Task-irrelevant distractors post;rior ;ampiing
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» Posterior sampling (Rakelly, Kate, et al. 2019)?

= Exploitation policies may not explore effectively, N\X

as they are not optimized for exploration
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Efficient exploration
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Empowerment-Driven Exploration

* Meta-RL as task inference (Humplik, Jan, et al. 2019):
» t(als, z), z IS a latent variable containing task information.
= Exploration should support task inference.
= Gain empowerment over the current task.
= Objective: max I(C; K) §
= C: exploration experience y

= X task identification &*\&
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Efficient exploration
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Empowerment-Driven Exploration

= Deriving intrinsic rewards
* max I (C; X)

* Tine(Ctr1, 1) = —logp(r, Seqqlcy, at)'+ ‘logp(rt, Se+1lC.t, a, K)'
Lyrea (C.t41) _L%‘Selfi (k,ct)
1.2
= Subtraction of two model prediction errors! 07
= Lyreq: UNcertainty given current experiences 0.2
- L’;,“rse’ﬁl: uncertainty given task identification 0.3
= Implication: only focus on uncertainty that helps task inference 0.8 e
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Separating Exploration and Exploitation

» Exploration and exploitation naturally obtain different
ObJeCtlveS! Exploration
= Exploration: obtain task information - /
= Exploitation: maximize expected return
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Exploitation

* They should be two separate policies.
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Results
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Take-Aways

MetaCURE addresses the exploration problem in Meta-RL.

Empowerment-driven exploration:
» Maximize MI between exploration experiences and the task identification

Separation of exploration and exploitation policies

These ideas lead to superior performance on various hard sparse-
reward Meta-RL benchmarks.
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