ICML | 2021

Graph Contrastive Learning Automated

Yuning You¹, Tianlong Chen², Yang Shen¹, Zhangyang Wang²

¹Texas A&M University, ²University of Texas at Austin

Background

- Graph contrastive learning
 Graph neural network
 Contractive learning
 - Contrastive learning
 - Simple yet effective

Ref 1. GCN, ICLR'17

Ref 2. SimCLR, ICML'20

Challenge: heterogeneous nature of graph data

Fig 1. Social networks

Fig 2. Polymers

Background

TEXAS The University of Texas at Austin

A representative, GraphCL

Ref 3. GraphCL, NeurIPS'20

Perturbation invariance

Hand-picking augmentation per datasets

✤ Human labor!

		1.59	
ALL STORY	Data augmentation	Туре	Underlying Prior
	Node dropping	Nodes, edges	Vertex missing does not alter semantics.
Augmentations:	Edge perturbation	Edges	Semantic robustness against connectivity variations.
	Attribute masking	Nodes	Semantic robustness against losing partial attributes.
	Subgraph	Nodes, edges	Local structure can hint the full semantics.

1.13 1.50 1.25 1.06 1.39

Background

Data heterogeneity

Ad-hoc choices of augmentations in GraphCL

Rules derived from tedious tuning

> Question: Can we be more principled and automated?

	Subgraph			Nodes, edges				Local structure can hint the full semantics.														
		1.00			4					1.4	N				5							
		NCI1			_		PF	ROTEIN	IS				(COLLA	в		_			RDT-B		
0.42	1.25	-2.42	-0.17	-1.44	2	2.47	2.27	1.01	1.07	-0.74		4.85	6.17	3.10	5.12	-2.64	1	1.66	1.39	0.85	0.17	-0.26
0.03	1.20	-0.62	-1.05	-1.14	2	2.43	1.89	0.85	1.15	1.51		6.02	6.54	4.05	5.26	4.61	1	1.37	1.53	0.47	-0.36	0.25
-1.26	1.95	-3.07	-1.18	-2.44	1	1.28	2.97	0.71	1.37	0.96		6.62	6.43	0.61	5.28	3.53		1.74	1.52	0.97	0.34	0.71

aberron upper as a start and sentice aberron upper as a start and benetic

2.54 2.30

2.00 2.27 1.62 1.31 1.30

Identical

AttrMask

EdgePer

Subgraph 1.63 1.17 2.10 1.90 1.62

NodeDrop 0.85 1.57 -0.86 -0.59 -0.17

Contributions

Given a new and unseen graph dataset, can GraphCL automatically select augmentations, avoiding ad-hoc choices or tedious tuning?

- Joint augmentation optimization (JOAO)
 - A principled bi-level optimization framework
 - Automatic, free of human labor of trial-and-error
 - Adaptive, generalizing smoothly to handling diverse graph data
 - Dynamic, allowing for augmentation types varying at different steps

Method. JOAO

GraphCL

Enforcing perturbation invariance

Data augmentation	Туре	Underlying Prior
Node dropping	Nodes, edges	Vertex missing does not alter semantics.
Edge perturbation	Edges	Semantic robustness against connectivity variations.
Attribute masking	Nodes	Semantic robustness against losing partial attributes.
Subgraph	Nodes, edges	Local structure can hint the full semantics.

$$\begin{split} \min_{\theta} \mathcal{L}(\mathsf{G},\mathsf{A}_{1},\mathsf{A}_{2},\theta) \\ = \min_{\theta} \Big\{ (-\mathbb{E}_{\mathbb{P}_{\mathsf{G}} \times \mathbb{P}_{(\mathsf{A}_{1},\mathsf{A}_{2})}} \sin(\overline{\mathsf{T}_{\theta,1}(\mathsf{G})}, \mathsf{T}_{\theta,2}(\mathsf{G})) & (1) \\ + \mathbb{E}_{\mathbb{P}_{\mathsf{G}} \times \mathbb{P}_{\mathsf{A}_{1}}} \log(\mathbb{E}_{\mathbb{P}_{\mathsf{G}'} \times \mathbb{P}_{\mathsf{A}_{2}}} \exp(\sin(\underline{\mathsf{T}_{\theta,1}(\mathsf{G})}, \mathsf{T}_{\theta,2}(\mathsf{G}')))) \Big\}, \end{split}$$

The unified framework, joint augmentation optimization (JOAO) as a bi-level optimization

$$\min_{\theta} \quad \mathcal{L}(\mathsf{G},\mathsf{A}_{1},\mathsf{A}_{2},\theta), \\ \text{s.t.} \quad \mathbb{P}_{(\mathsf{A}_{1},\mathsf{A}_{2})} \in \arg\min_{\mathbb{P}_{(\mathsf{A}_{1}',\mathsf{A}_{2}')}} \mathcal{D}(\mathsf{G},\mathsf{A}_{1}',\mathsf{A}_{2}',\theta),$$
(2)

Method. Instantiation of JOAO

A min-max optimization instantiation

$$\min_{\theta} \quad \mathcal{L}(\mathsf{G},\mathsf{A}_{1},\mathsf{A}_{2},\theta),$$
s.t. $\mathbb{P}_{(\mathsf{A}_{1},\mathsf{A}_{2})} \in \arg\max_{\mathbb{P}_{(\mathsf{A}_{1}',\mathsf{A}_{2}')}} \left\{ \mathcal{L}(\mathsf{G},\mathsf{A}_{1}',\mathsf{A}_{2}',\theta) \right\}$

$$- \frac{\gamma}{2} \operatorname{dist}(\mathbb{P}_{(\mathsf{A}_{1}',\mathsf{A}_{2}')},\mathbb{P}_{\operatorname{prior}}) \right\},$$
(3)

> Principles

Exploiting challenging augmentations: model-based adversarial training

Ref 5. Wang et

al., arXiv'19

- Regularization with prior
 - Uniform distribution avoiding collapse
 - Squared Euclidean distance
- **\Rightarrow** Trade-off by γ

 $\operatorname{dist}(\mathbb{P}_{(\mathsf{A}_1,\mathsf{A}_2)},\mathbb{P}_{\operatorname{prior}}) = \sum_{i=1}^{|\mathcal{A}|} \sum_{j=1}^{|\mathcal{A}|} (p_{ij} - \frac{1}{|\mathcal{A}|^2})^2,$ $p_{ij} = \operatorname{Prob}(\mathsf{A}_1 = A^i, \mathsf{A}_2 = A^j)$

Ref-4. MBRDL, arXiv'20

- Alternating gradient descent (AGD) Ref 5. Wang et al., arXiv'19
 - Upper-level minimization
 - Lower-lever maximization

- Upper-level minimization
 - GraphCL optimization given sampling distribution

$$\theta^{(n)} = \theta^{(n-1)} - \alpha' \nabla_{\theta} \mathcal{L}(\mathsf{G}, \mathsf{A}_1, \mathsf{A}_2, \theta), \qquad (4)$$

where $\alpha' \in \mathcal{R}_{>0}$ is the learning rate.

$$\begin{split} \min_{\theta} \quad \mathcal{L}(\mathsf{G},\mathsf{A}_{1},\mathsf{A}_{2},\theta), \\ \text{s.t.} \quad \mathbb{P}_{(\mathsf{A}_{1},\mathsf{A}_{2})} \in \arg\max_{\mathbb{P}_{(\mathsf{A}_{1}',\mathsf{A}_{2}')}} \Big\{ \mathcal{L}(\mathsf{G},\mathsf{A}_{1}',\mathsf{A}_{2}',\theta) \\ \quad -\frac{\gamma}{2} \operatorname{dist}(\mathbb{P}_{(\mathsf{A}_{1}',\mathsf{A}_{2}')},\mathbb{P}_{\operatorname{prior}}) \Big\}, \end{split} (3)$$

7/19

- Lower-level maximization
 - Gradient is not intuitive
 - Analytical rewrite

$$\mathcal{L}(\mathsf{G},\mathsf{A}_{1},\mathsf{A}_{2},\theta) = \sum_{i=1}^{|\mathcal{A}|} \sum_{j=1}^{|\mathcal{A}|} \underbrace{p_{ij}}_{p_{ij}} \left\{ -\mathbb{E}_{\mathbb{P}_{\mathsf{G}}} \mathrm{sim}(T_{\theta}^{i}(\mathsf{G}), T_{\theta}^{j}(\mathsf{G})) + \mathbb{E}_{\mathbb{P}_{\mathsf{G}}} \log(\sum_{j'=1}^{|\mathcal{A}|} \underbrace{p_{j'}}_{\mathsf{Undesired}} \mathbb{E}_{\mathbb{P}_{\mathsf{G}'}} \exp(\mathrm{sim}(T_{\theta}^{i}(\mathsf{G}), T_{\theta}^{j'}(\mathsf{G}')))) \right\},$$
(5)

- Undesired marginal probability $p_{i'}$ entangled in negative term

$$\begin{split} \min_{\theta} \quad \mathcal{L}(\mathsf{G},\mathsf{A}_{1},\mathsf{A}_{2},\theta), \\ \text{s.t.} \quad \mathbb{P}_{(\mathsf{A}_{1},\mathsf{A}_{2})} \in \arg\max_{\mathbb{P}_{(\mathsf{A}_{1}',\mathsf{A}_{2}')}} \Big\{ \mathcal{L}(\mathsf{G},\mathsf{A}_{1}',\mathsf{A}_{2}',\theta) \\ &\quad -\frac{\gamma}{2} \operatorname{dist}(\mathbb{P}_{(\mathsf{A}_{1}',\mathsf{A}_{2}')},\mathbb{P}_{\operatorname{prior}}) \Big\}, \end{split}$$
(3)

• A lower-bound approximation to decouple $p_{i'}$

$$\begin{split} & \mathbb{E}_{\mathbb{P}_{\mathsf{G}} \times \mathbb{P}_{\mathsf{A}_{1}}} \log(\mathbb{E}_{\mathbb{P}_{\mathsf{G}'} \times \mathbb{P}_{\mathsf{A}_{2}}} \exp(\operatorname{sim}(\mathsf{T}_{\theta,1}(\mathsf{G}),\mathsf{T}_{\theta,2}(\mathsf{G}')))) \\ & \geq \mathbb{E}_{\mathbb{P}_{\mathsf{G}} \times \mathbb{P}_{\mathsf{A}_{1}} \times \mathbb{P}_{\mathsf{A}_{2}}} \log(\mathbb{E}_{\mathbb{P}_{\mathsf{G}'}} \exp(\operatorname{sim}(\mathsf{T}_{\theta,1}(\mathsf{G}),\mathsf{T}_{\theta,2}(\mathsf{G}')))) \\ & \approx \mathbb{E}_{\mathbb{P}_{\mathsf{G}} \times \mathbb{P}_{(\mathsf{A}_{1},\mathsf{A}_{1})}} \log(\mathbb{E}_{\mathbb{P}_{\mathsf{G}'}} \exp(\operatorname{sim}(\mathsf{T}_{\theta,1}(\mathsf{G}),\mathsf{T}_{\theta,2}(\mathsf{G}')))), \end{split}$$
 (6)

 $\min_{\theta} \mathcal{L}(\mathsf{G},\mathsf{A}_{1},\mathsf{A}_{2},\theta),$ s.t. $\mathbb{P}_{(\mathsf{A}_{1},\mathsf{A}_{2})} \in \arg\max_{\mathbb{P}_{(\mathsf{A}_{1}',\mathsf{A}_{2}')}} \Big\{ \mathcal{L}(\mathsf{G},\mathsf{A}_{1}',\mathsf{A}_{2}',\theta)$ $- \frac{\gamma}{2} \operatorname{dist}(\mathbb{P}_{(\mathsf{A}_{1}',\mathsf{A}_{2}')},\mathbb{P}_{\operatorname{prior}}) \Big\},$ (3)

Approximated contrastive loss:

$$\mathcal{L}(\mathsf{G},\mathsf{A}_{1},\mathsf{A}_{2},\theta) \approx \sum_{i=1}^{|\mathcal{A}|} \sum_{j=1}^{|\mathcal{A}|} p_{ij}^{\text{Targeted}} \mathcal{L}(\mathsf{G},A^{i},A^{j},\theta)$$
$$= \sum_{i=1}^{|\mathcal{A}|} \sum_{j=1}^{|\mathcal{A}|} p_{ij} \Big\{ -\mathbb{E}_{\mathbb{P}_{\mathsf{G}}} \mathrm{sim}(T_{\theta}^{i}(\mathsf{G}), T_{\theta}^{j}(\mathsf{G})) +\mathbb{E}_{\mathbb{P}_{\mathsf{G}}} \mathrm{log}(\mathbb{E}_{\mathbb{P}_{\mathsf{G}'}} \exp(\mathrm{sim}(T_{\theta}^{i}(\mathsf{G}), T_{\theta}^{j}(\mathsf{G}')))) \Big\}.$$
(7)

Rewrote lower-level optimization

$$\mathbb{P}_{(\mathsf{A}_{1},\mathsf{A}_{2})} \in \operatorname{arg\,max}_{\boldsymbol{p}\in\mathcal{P},\boldsymbol{p}=[p_{ij}],i,j=1,\ldots,|\mathcal{A}|} \{\psi(\boldsymbol{p})\},$$
$$\psi(\boldsymbol{p}) = \sum_{i=1}^{|\mathcal{A}|} \sum_{j=1}^{|\mathcal{A}|} p_{ij}\ell(\mathsf{G},A^{i},A^{j},\theta) - \frac{\gamma}{2} \sum_{i=1}^{|\mathcal{A}|} \sum_{j=1}^{|\mathcal{A}|} (p_{ij} - \frac{1}{|\mathcal{A}|^{2}})^{2},$$
(8)

$$\begin{split} \min_{\theta} \quad \mathcal{L}(\mathsf{G},\mathsf{A}_{1},\mathsf{A}_{2},\theta), \\ \text{s.t.} \quad \mathbb{P}_{(\mathsf{A}_{1},\mathsf{A}_{2})} \in \arg\max_{\mathbb{P}_{(\mathsf{A}_{1}',\mathsf{A}_{2}')}} \Big\{ \mathcal{L}(\mathsf{G},\mathsf{A}_{1}',\mathsf{A}_{2}',\theta) \\ &\quad -\frac{\gamma}{2} \operatorname{dist}(\mathbb{P}_{(\mathsf{A}_{1}',\mathsf{A}_{2}')},\mathbb{P}_{\operatorname{prior}}) \Big\}, \end{split}$$
(3)

Projected gradient descent Ref 6. Boyd et al., 2004

$$b = p^{(n-1)} + \alpha'' \nabla_p \psi(p^{(n-1)}), p^{(n)} = (b - \mu \mathbf{1})_+, \quad (9)$$

where $\alpha'' \in \mathcal{R}_{>0}$ is the learning rate, μ is the root of the equation $\mathbf{1}^{\mathsf{T}}(\boldsymbol{b} - \mu \mathbf{1}) = 1$, and $(\cdot)_+$ is the element-wise non-negative operator. μ can be efficiently found via the bi-jection method.

Empirical convergence

Method. JOAO Sanity Check

11/19

> Are JOAO selected augmentation reasonable?

Selections

 align with
 "best practices"

Method. JOAOv2 Addressing Distortion

- JOAO selects automatic, adaptive and dynamic augmentations
- However, more diverse, aggressive and challenging
- Potentially distorting training distribution Ref 7. SLA+AG, ICML'20 Ref 8. DistAug, ICML'20

Datasets	A.S.	JOAO	JOAOv2
NCU	0.2	61.77 ± 1.61	$62.52{\pm}1.16$
NCII	0.25	60.95 ± 0.55	$61.67 {\pm} 0.72$
DDOTEINS	0.2	71.45 ± 0.89	71.66 ± 1.10
FROTEINS	0.25	71.61 ± 1.65	$73.01{\pm}1.02$

JOAOv2 = JOAO + augmentation-aware multi-projection heads

$$\min_{\theta} \quad \mathcal{L}_{v2}(\mathsf{G},\mathsf{A}_{1},\mathsf{A}_{2},\theta',\Theta_{1}'',\Theta_{2}''),$$
s.t.
$$\mathbb{P}_{(\mathsf{A}_{1},\mathsf{A}_{2})} \in \arg\max_{\mathbb{P}_{(\mathsf{A}_{1}',\mathsf{A}_{2}')}} \left\{ \mathcal{L}_{v2}(\mathsf{G},\mathsf{A}_{1},\mathsf{A}_{2},\theta',\Theta_{1}'',\Theta_{2}'') - \frac{\gamma}{2} \operatorname{dist}(\mathbb{P}_{(\mathsf{A}_{1}',\mathsf{A}_{2}')},\mathbb{P}_{\operatorname{prior}}) \right\},$$

$$\mathbb{P}_{(g_{\Theta_{1}''},g_{\Theta_{2}''})} = \mathbb{P}_{(\mathsf{A}_{1},\mathsf{A}_{2})}.$$
(10)

12/19

Experiments & Discussions

TEXAS The University of Texas at Austin

- Settings
 - Semi-supervised
 - Unsupervised
 - ✤ Transfer
- Datasets
 - Across diverse fields
 - On bioinformatics domains

- > Competitors
 - Heuristic designed pretexts
 - GraphCL with rules

Summary of JOAO performance

	v.s. GraphCL	v.s. Heuristic methods
Across diverse fields	Comparable	Better
On specific domains	Better	Worse

Experiments & Discussions. Across Diverse Datasets

JOAO performs on par with ad-hoc rules

Augmentation-aware projection heads strengths JOAO

Semi-supervised learning

L.R.	Methods	NCI1	PROTEINS	DD	COLLAB	RDT-B	RDT-M5K	GITHUB	A.R.↓
1%	No pre-train.	60.72 ± 0.45	-	-	57.46 ± 0.25	-	-	$54.25 {\pm} 0.22$	7.6
	Augmentations	$60.49 {\pm} 0.46$	-	-	$58.40 {\pm} 0.97$	-	-	$56.36{\pm}0.42$	6.6
	GAE	$\overline{61.63} \pm \overline{0.84}$			$\bar{63.20\pm0.67}$			59.44±0.44	4.0
	Infomax	62.72±0.65	-	-	61.70 ± 0.77	-	-	$58.99 {\pm} 0.50$	3.3
	ContextPred	61.21 ± 0.77			57.60 ± 2.07			56.20 ± 0.49	6.6
	GraphCL	62.55±0.86	-	-	64.57±1.15	-	-	$58.56 {\pm} 0.59$	2.6
- 17	JOAO	61.97±0.72	-	-	63.71±0.84		-	60.35±0.24	3.0
	JOAOv2	62.52±1.16	-	-	64.51±2.21	-	-	61.05±0.31	2.0
10%	No pre-train.	73.72 ± 0.24	70.40±1.54	73.56±0.41	73.71±0.27	86.63±0.27	51.33±0.44	60.87±0.17	7.0
	Augmentations	$73.59 {\pm} 0.32$	$70.29 {\pm} 0.64$	$74.30{\pm}0.81$	$74.19 {\pm} 0.13$	$87.74 {\pm} 0.39$	$52.01 {\pm} 0.20$	$60.91 {\pm} 0.32$	6.2
	GĀĒ	74.36±0.24	70.51 ± 0.17	74.54 ± 0.68	75.09 ± 0.19	87.69±0.40	53.58 ±0.13	$6\bar{3}.8\bar{9}\pm\bar{0}.5\bar{2}$	4.5
	Infomax	74.86 ±0.26	72.27 ± 0.40	75.78±0.34	73.76±0.29	$88.66 {\pm} 0.95$	53.61±0.31	$65.21 {\pm} 0.88$	3.0
. —	ContextPred	73.00 ± 0.30	70.23 ± 0.63	74.66 ± 0.51	73.69 ± 0.37	84.76 ± 0.52	51.23 ± 0.84	62.35 ± 0.73	7.2
	<u>GraphCL</u>	74.63±0.25	74.17±0.34	76.17±1.37	74.23 ± 0.21	89.11±0.19	52.55 ± 0.45	65.81 ± 0.79	2.4
	JŌĀŌ	74.48±0.27	72.13±0.92	75.69±0.67	75.30 ±0.32	88.14±0.25	52.83±0.54	65.00±0.30	3.5
	JOAOv2	74.86±0.39	73.31±0.48	75.81±0.73	75.53±0.18	88.79 ± 0.65	52.71 ± 0.28	66.66±0.60	1.8

Unsupervised learning

	Methods	NCI1	PROTEINS	DD	MUTAG	COLLAB	RDT-B	RDT-M5K	IMDB-B	A.R.↓
	GL	-	-	-	$81.66 {\pm} 2.11$	-	$77.34{\pm}0.18$	41.01 ± 0.17	$65.87 {\pm} 0.98$	7.4
	WL	80.01±0.50	$72.92{\pm}0.56$	-	$80.72 {\pm} 3.00$	-	$68.82{\pm}0.41$	$46.06 {\pm} 0.21$	72.30±3.44	5.7
	DGK	80.31±0.46	$73.30{\pm}0.82$	-	$87.44 {\pm} 2.72$	-	$78.04{\pm}0.39$	$41.27 {\pm} 0.18$	$66.96 {\pm} 0.56$	4.9
	node2vec	54.89±1.61	57.49 ± 3.57	-	$72.63{\pm}10.20$	-	-	-	-	8.6
	sub2vec	52.84±1.47	$53.03 {\pm} 5.55$	-	$61.05{\pm}15.80$	-	$71.48 {\pm} 0.41$	$36.68 {\pm} 0.42$	$55.26{\pm}1.54$	9.5
	graph2vec	73.22 ± 1.81	$73.30{\pm}2.05$	-	$83.15 {\pm} 9.25$	-	$75.78{\pm}1.03$	$47.86 {\pm} 0.26$	$71.10{\pm}0.54$	5.7
	MVGRL	-	-	-	$75.40{\pm}7.80$	-	82.00 ± 1.10	-	$63.60 {\pm} 4.20$	7.2
	InfoGraph	76.20 ± 1.06	74.44±0.31	72.85 ± 1.78	89.01±1.13	70.65±1.13	82.50 ± 1.42	53.46 ± 1.03	73.03±0.87	3.0
	GraphCL	77.87 ± 0.41	74.39 ±0.45	78.62±0.40	86.80 ± 1.34	71.36±1.15	89.53±0.84	55.99±0.28	71.14±0.44	2.6
	JOAO	78.07±0.47	74.55±0.41	77.32±0.54	87.35±1.02	69.50 ±0.36	85.29±1.35	55.74±0.63	70.21 ± 3.08	3.3
2	JOAOv2	78.36 ± 0.53	74.07 ± 1.10	77.40±1.15	87.67±0.79	69.33±0.34	86.42±1.45	56.03±0.27	70.83 ± 0.25	2.8

Experiments & Discussions. Across Diverse Datasets

L.R.	Methods	NCI1	PROTEINS	DD	COLLAB	RDT-B	RDT-M5K	GITHUB	A.R.↓
1%	No pre-train.	60.72 ± 0.45	-	-	57.46±0.25	-	-	$54.25 {\pm} 0.22$	7.6
	Augmentations	$60.49 {\pm} 0.46$	-	-	58.40 ± 0.97	-	-	$56.36{\pm}0.42$	6.6
	GAE	61.63 ± 0.84	-	-	63.20 ± 0.67	-	-	59.44 ± 0.44	4.0
1	Infomax	62.72±0.65	-	-	61.70 ± 0.77	-	-	$58.99{\pm}0.50$	3.3
	ContextPred	61.21 ± 0.77			57.60 ± 2.07			56.20 ± 0.49	6.6
-	GraphCL	62.55±0.86	-		64.57±1.15	-		$58.56 {\pm} 0.59$	2.6
	JOAO	61.97±0.72	-	-	63.71±0.84		-	60.35±0.24	3.0
	JOAOv2	62.52 ±1.16	-	-	64.51 ±2.21	-	-	61.05 ±0.31	2.0
10%	No pre-train.	73.72 ± 0.24	70.40±1.54	73.56±0.41	73.71±0.27	86.63±0.27	51.33±0.44	60.87±0.17	7.0
	Augmentations	$73.59 {\pm} 0.32$	$70.29 {\pm} 0.64$	$74.30{\pm}0.81$	$74.19 {\pm} 0.13$	$87.74 {\pm} 0.39$	$52.01 {\pm} 0.20$	$60.91 {\pm} 0.32$	6.2
	GAE	74.36 ± 0.24	70.51 ± 0.17	74.54 ± 0.68	75.09±0.19	87.69 ± 0.40	53.58±0.13	63.89 ± 0.52	4.5
1	Infomax	74.86±0.26	72.27 ± 0.40	75.78±0.34	73.76±0.29	$88.66 {\pm} 0.95$	53.61±0.31	$65.21 {\pm} 0.88$	3.0
	ContextPred	73.00±0.30	70.23±0.63	74.66±0.51	73.69±0.37	84.76 ± 0.52	51.23 ± 0.84	<u>62.35±0.73</u>	7.2
	GraphCL	74.63±0.25	74.17±0.34	76.17±1.37	74.23 ± 0.21	89.11±0.19	52.55 ± 0.45	65.81±0.79	2.4
	JOÃO	74.48±0.27	72.13±0.92	75.69±0.67	75.30±0.32	88.14±0.25	52.83±0.54	65.00 ± 0.30	3.5
	JOAOv2	74.86±0.39	$73.31{\pm}0.48$	75.81±0.73	75.53±0.18	$88.79 {\pm} 0.65$	$52.71 {\pm} 0.28$	66.66 ±0.60	1.8

Semi-supervised learning

JOAOv2 generally outperforms heuristic self-supervised pretext tasks

Unsupervised learning

Methods	NCI1	PROTEINS	DD	MUTAG	COLLAB	RDT-B	RDT-M5K	IMDB-B	A.R.↓
GL	-	-	-	81.66±2.11	-	$77.34{\pm}0.18$	41.01 ± 0.17	$65.87 {\pm} 0.98$	7.4
WL	80.01±0.50	$72.92{\pm}0.56$	-	$80.72 {\pm} 3.00$	-	$68.82{\pm}0.41$	$46.06 {\pm} 0.21$	72.30±3.44	5.7
DGK	80.31 ±0.46	$73.30{\pm}0.82$	-	$87.44{\pm}2.72$	-	$78.04{\pm}0.39$	$41.27{\pm}0.18$	$66.96{\pm}0.56$	4.9
node2vec	54.89 ± 1.61	57.49 ± 3.57	-	72.63 ± 10.20	-	-	-	-	8.6
sub2vec	52.84±1.47	$53.03 {\pm} 5.55$	-	$61.05{\pm}15.80$	-	$71.48 {\pm} 0.41$	$36.68 {\pm} 0.42$	$55.26{\pm}1.54$	9.5
graph2vec	73.22 ± 1.81	$73.30{\pm}2.05$	-	$83.15{\pm}9.25$	-	$75.78{\pm}1.03$	$47.86 {\pm} 0.26$	$71.10{\pm}0.54$	5.7
MVGRL	-	-	-	$75.40{\pm}7.80$	-	$82.00 {\pm} 1.10$	-	$63.60{\pm}4.20$	7.2
InfoGraph_	<u>76.20±1.06</u>	<u>74.44±0.31</u>	72.85 ± 1.78	<u>89.01±1.13</u>	<u>70.65±1.13</u>	<u>82.50±1.42</u>	<u>53.46±1.03</u>	<u>73.03±0.87</u>	3.0
GraphCL	77.87 ± 0.41	74.39±0.45	78.62±0.40	86.80±1.34	71.36±1.15	89.53±0.84	55.99±0.28	71.14±0.44	2.6
JOAO	78.07±0.47	74.55±0.41	77.32±0.54	87.35±1.02	69.50 ±0.36	85.29±1.35	55.74±0.63	70.21±3.08	3.3
JOAOv2	78.36 ± 0.53	74.07 ± 1.10	77.40±1.15	87.67±0.79	69.33±0.34	86.42±1.45	56.03 ±0.27	$70.83{\pm}0.25$	2.8

Experiments & Discussions. On Bioinformatics Datasets

- JOAOv2 underperforms heuristic self-supervised pretext tasks, without incorporating domain expertise
- JOAOv2 generalizes better than GraphCL on unseen / domain specific datasets

Methods	BBBP	Tox21	ToxCast	SIDER	ClinTox	MUV	HIV	BACE	PPI	A.R.↓
No pre-train.	65.8±4.5	$74.0{\pm}0.8$	$63.4{\pm}0.6$	57.3±1.6	58.0±4.4	71.8±2.5	75.3±1.9	70.1±5.4	64.8±1.0	6.6
Infomax	68.8 ± 0.8	75.3 ± 0.5	62.7 ± 0.4	58.4 ± 0.8	69.9±3.0	75.3±2.5	76.0 ± 0.7	75.9±1.6	64.1±1.5	5.3
EdgePred	67.3±2.4	76.0±0.6	64.1 ±0.6	$60.4 {\pm} 0.7$	64.1±3.7	74.1 ± 2.1	76.3 ± 1.0	79.9 ±0.9	65.7±1.3	3.8
AttrMasking	64.3±2.8	76.7±0.4	64.2±0.5	61.0±0.7	71.8 ± 4.1	74.7±1.4	77.2 ± 1.1	79.3 ±1.6	65.2±1.6	3.1
ContextPred	$68.0{\pm}2.0$	75.7±0.7	63.9 ±0.6	60.9 ±0.6	65.9 ± 3.8	75.8±1.7	77.3±1.0	79.6±1.2	64.4±1.3	3.4
GraphCL	69.68 ±0.67	73.87 ± 0.66	62.40 ± 0.57	60.53±0.88	75.99±2.65	69.80 ± 2.66	78.47±1.22	75.38 ± 1.44	67.88±0.85	4.6
JOAO	70.22±0.98	$74.98 {\pm} 0.29$	$62.94 {\pm} 0.48$	59.97±0.79	81.32±2.49	71.66 ± 1.43	76.73±1.23	77.34 ± 0.48	64.43±1.38	4.5
JOAOv2	71.39 ±0.92	$74.27 {\pm} 0.62$	$63.16 {\pm} 0.45$	60.49 ± 0.74	80.97 ±1.64	73.67 ± 1.00	77.51±1.17	75.49 ± 1.27	63.94 ± 1.59	4.3

Transfer learning

Experiments & Discussions. On Large-Scale Datasets

JOAOv2 achieves a better generalizability and scalability, outperforms on large-scale datasets

Semi-supervised learning on large-scale datasets

L.R.	Methods	ogbg-ppa	ogbg-code
1%	No pre-train.	$16.04{\pm}0.74$	$6.06 {\pm} 0.01$
	GraphCL	40.81 ± 1.33	7.66±0.25
	JŌĀŌ	47.19 ±1.30	6.84±0.31
	JOAOv2	44.30 ±1.67	7.74±0.24
10%	No pre-train.	56.01 ± 1.05	$17.85 {\pm} 0.60$
	GraphCL	57.77 ± 1.25	22.45 ±0.17
	JŌĀŌ	60.91±0.83	$\bar{2}2.0\bar{6}\pm0.3\bar{0}$
	JOAOv2	59.32 ±1.11	22.65 ±0.22

Conclusions

Problem: Handling heterogenous graph data with less manual efforts

> Contributions:

- JOAO, a unified automatic framework
- An instantiation as min-max optimization, with AGD for solution
- JOAOv2, addressing distortion with multi-projection heads
- Thorough experiments verifying the rationale and performance advantage

Further Discussions

Automating augmentation selection, while requiring human to construct & config augmentation pool: "full" automation is still desired

- > Potential:
 - In parallel to the principled formulation of bi-level optimization, a metalearning formulation can also be pursued

References & Figures

- References
 - 1. Semi-Supervised Classification with Graph Convolutional Networks
 - > 2. A Simple Framework for Contrastive Learning of Visual Representations
 - > 3. Graph Contrastive Learning with Augmentation
 - 4. Model Based Robust Deep Learning
 - > 5. Towards A Unified Min-Max Framework for Adversarial Exploration and Robustness
 - ➢ 6. Convex Optimization
 - 7. Self-Supervised Label Augmentation via Input Transformations
 - > 8. Distribution Augmentation for Generative Modeling
- Figures
 - 1. https://www.euroscientist.com/imagine-a-social-network-like-facebook-with-nofacebook/
 - > 2. https://www.thoughtco.com/what-is-a-polymer-820536
 - > 3. https://www.e-education.psu.edu/ebf483/node/643

Thank you for listening!

Paper: https://arxiv.org/abs/2106.07594

Code: https://github.com/Shen-Lab/GraphCL_Automated