1-bit Adam: Communication Efficient Large-Scale Training with Adam's Convergence Speed

Authors: Hanlin Tang (presenter), Shaoduo Gan, Samyam Rajbhandari, Ammar Ahmad Awan, Conglong Li, Xiangru Lian, Ji Liu, Ce Zhang, Yuxiong He

Algorithm Design

Gradient Compression

Compression:

32x of communication reduction

Slower convergence

Error Compensation:

 $g_1 = 3.3, \quad g_2 = -1.1, \quad \gamma = 1$

Step 1:
$$x = x + Sign(3.3)$$
; $error = 2.3$
Step 2: $x = x + Sign(-1.1 + 2.3)$; $error = 0.2$

32x of communication reduction

Same convergence

Adam?

Adam:

Nonlinear term Incompatible with error compensation

Adam:Quasi Adam: $x_{t+1} = x_t - \gamma \frac{m_t}{\sqrt{v_t}}$ $x_{t+1} = x_t - \gamma \frac{m_t}{\sqrt{v_t}}$ $m_t = \beta_1 m_{t-1} + (1 - \beta_1) g_t$ Constant v $w_t = \beta_2 v_{t-1} + (1 - \beta_2) g_t^2$ Define: $\gamma_v = \frac{\gamma}{\sqrt{v}}$

Momentum SGD:

$$oldsymbol{x}_{t+1} = oldsymbol{x}_t - \gamma_v oldsymbol{m}_t;$$

 $oldsymbol{m}_t = eta_1 oldsymbol{m}_{t-1} + (1 - eta_1) oldsymbol{g}_t;$

 v_t becomes more stable along with training.

1-bit Adam

Warmup phase:

• Original Adam (No compression)

Compression phase:

- Keep v_t unchanged
- Compress m_t only

Convergence Results

32x speedup after warmup, 5x speedup in total (10%~15% warmup needed)

ResNet-18

System Implementation

System Implementation

- An efficient implementation of CUDA-Aware Collective Communication backend that works for both InifiniBand and Ethernet network.
- Efficient compression kernel for encoding gradients (32-bits) into 1-bit.
- Compatible with half-precision training (16-bits).
- Released in Micorsoft DeepSpeed.

System Implementation

Results: BERT-Large pretraining. End-to-end training speed comparison (including both computation and communication)

4 V100/node, 40 Gbps Ethernet

8 V100/node, 100 Gbps InfiniBand

Thank You