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Overview

For a K-way tensor-valued
Gaussian r.v. X ∈ Rd1×···×dK ,
the Sylvester graphical model
proposed to model the precision

matrix Ω =
(⊕K

k=1 Ψk

)2
∈

Rd×d, d =
∏

k dk, where
Ψk ∈ Rdk×dk ’s can be obtained
via min. of the penalized negative
log-pseudolikelihood.

Lλ(Ψ) = −N

2 log |(
K⊕

k=1
diag(Ψk))2|+ N

2 tr(S · (
K⊕

k=1
Ψk)2) +

K∑
k=1

Pλk
(Ψk)

:= H(Ψ1, . . . , ΨK) +
K∑

k=1
Gk(Ψk).

(1)
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Optimization

H(·) has block-wise Lipschitz gradients and G(·) is proximal friendly⇒ a Proximal
Alternating Linearized Minimizing (PALM) algorithm:

Algorithm 1 SG-PALM

Require: X , λk > 0, c ∈ (0, 1), η0 > 0, initial iterates {Ψk}K
k=1.

while not converged do
for k = 1, . . . , K do

Line search: Let ηt
k be the largest element of {cjηt

k,0}j=1,... such that a sufficient
descent condition is satisfied.
Update: Ψt+1

k ← proxηt
kλk

Gk

(
Ψt

k − ηt
k∇kH(Ψt+1

i<k, Ψt
i≥k)

)
.

end for
Update initial step size: Compute ηt+1

0 = mink ηt+1
k,0 , where ηt+1

k,0 is computed
via the Barzilai-Borwein strategy.

end while
Ensure: Final iterates {Ψk}K

k=1.
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Iterative convergence

Pros:
• O

(∑K
k=1(skd2

k + N
∑

j ̸=k sjd2
j )
)

operations per iteration⇒ lower than
competing methods for similar models when N ≪ d and sk ≪ dk.

• No matrix inversion/factorization & expensive storage⇒ comm.-efficient
parallelism.

• Fast convergence:

Theorem (For convex objective♯)

The sequence {Ψ(t)}t≥0 generated by SG-PALM converges linearly in the sense that

Lλ(Ψ(t+1))−minLλ

Lλ(Ψ(t))−minLλ
≤

(
α2Lmin

4Kc2(
∑K

j=1 Lj)2 + 4c2Lmax
+ 1
)−1

, (2)

where Lmin = minj Lj > 0, Lmax = maxj Lj > 0, α > 0, and c ∈ (0, 1). ♯
Nonconvex extensions available in the paper.
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Statistical convergence

Theorem (For ℓ1-penalty functions)

Let Ak := {(i, j) : (Ψ̄k)i,j ̸= 0, i ̸= j} and qk := |Ak| for k = 1, . . . , K. If

λk = O(
√

dk log d
N ) for all k = 1, . . . , K, then under regularity conditions specified in

the paper, ∃C > 0 such that ∀η > 0 the following holds with probability at least
1−O(exp(−η log d)):

K∑
k=1
∥offdiag(Ψ̂k)− offdiag(Ψ̄k)∥F ≤ C

√
K max

k

√
qkλk. (3)
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Application to solar flare prediction

Construct linear forward predictors for the last frame (at or right before a flare) by
using estimated precision matrix from all previous frames, i.e.,
X̂ t,:,:,: = Ω̂−1

2,2Ω̂2,1X t−1:t−(p−1),:,:,:, where q = dwidth · dheight · dchannel and
p = dtime, Ω̂2,2 ∈ Rq×q, Ω̂2,1 ∈ Rq×(p−1)q are submatrices of Ω̂.

Task illustration Predicted examples
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Physical interpretation

Consider the 2D spatio-temporal process u(x, t):

∂u/∂t = θ

2∑
i=1

∂2u/∂x2
i + ϵ

2∑
i=1

∂u/∂xi, (4)

where θ, ϵ are positive real (unknown) coefficients. This is the basic form of a class of
parabolic and hyperbolic PDEs, the Convection-Diffusion equation.

After finite-difference discretization, Equation (4) is equivalent to the Sylvester matrix
equation

Aθ,ϵUt + UtAθ,ϵ = Ut−1, (5)

where Ut = (u((i, j), t))ij and Aθ,ϵ is a tridiagonal matrix with values that depend on
the coefficients θ, ϵ and discretization step sizes. This is the same Sylvester equation
used for defining the objective function of our graphical model!
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