SG-PALM: a Fast Physically Interpretable Tensor Graphical Model

Yu Wang, Alfred Hero

University of Michigan

Overview

For a *K*-way tensor-valued Gaussian r.v. $\mathcal{X} \in \mathbb{R}^{d_1 \times \cdots \times d_K}$, the Sylvester graphical model proposed to model the precision matrix $\Omega = \left(\bigoplus_{k=1}^{K} \Psi_k\right)^2 \in \mathbb{R}^{d \times d}$, $d = \prod_k d_k$, where $\Psi_k \in \mathbb{R}^{d_k \times d_k}$'s can be obtained via min. of the penalized negative log-pseudolikelihood.

$$\mathcal{L}_{\lambda}(\boldsymbol{\Psi}) = -\frac{N}{2} \log |(\bigoplus_{k=1}^{K} \operatorname{diag}(\boldsymbol{\Psi}_{k}))^{2}| + \frac{N}{2} \operatorname{tr}(\mathbf{S} \cdot (\bigoplus_{k=1}^{K} \boldsymbol{\Psi}_{k})^{2}) + \sum_{k=1}^{K} P_{\lambda_{k}}(\boldsymbol{\Psi}_{k})$$

$$:= H(\boldsymbol{\Psi}_{1}, \dots, \boldsymbol{\Psi}_{K}) + \sum_{k=1}^{K} G_{k}(\boldsymbol{\Psi}_{k}).$$
(1)

Optimization

 $H(\cdot)$ has block-wise Lipschitz gradients and $G(\cdot)$ is proximal friendly \Rightarrow a Proximal Alternating Linearized Minimizing (PALM) algorithm:

Algorithm 1 SG-PALM

- **Require:** $\mathcal{X}, \lambda_k > 0, c \in (0, 1), \eta_0 > 0$, initial iterates $\{\Psi_k\}_{k=1}^K$. while not converged **do**
 - for $k = 1, \ldots, K$ do

Line search: Let η_k^t be the largest element of $\{c^j \eta_{k,0}^t\}_{j=1,...}$ such that a sufficient descent condition is satisfied,

$$Update: \Psi_k^{t+1} \leftarrow \operatorname{prox}_{G_k}^{\eta_k^t \lambda_k} \left(\Psi_k^t - \eta_k^t \nabla_k H(\Psi_{i < k}^{t+1}, \Psi_{i \geq k}^t) \right).$$

end for

Update initial step size: Compute $\eta_0^{t+1} = \min_k \eta_{k,0}^{t+1}$, where $\eta_{k,0}^{t+1}$ is computed via the Barzilai-Borwein strategy.

end while

Ensure: Final iterates $\{\Psi_k\}_{k=1}^K$.

Iterative convergence

Pros:

- $O\left(\sum_{k=1}^{K} (s_k d_k^2 + N \sum_{j \neq k} s_j d_j^2)\right)$ operations per iteration \Rightarrow lower than competing methods for similar models when $N \ll d$ and $s_k \ll d_k$.
- No matrix inversion/factorization & expensive storage ⇒ comm.-efficient parallelism.
- Fast convergence:

Theorem (For convex objective[‡])

The sequence $\{\Psi^{(t)}\}_{t\geq 0}$ generated by SG-PALM converges linearly in the sense that

$$\frac{\mathcal{L}_{\lambda}(\boldsymbol{\Psi}^{(t+1)}) - \min \mathcal{L}_{\lambda}}{\mathcal{L}_{\lambda}(\boldsymbol{\Psi}^{(t)}) - \min \mathcal{L}_{\lambda}} \le \left(\frac{\alpha^2 L_{\min}}{4Kc^2(\sum_{j=1}^K L_j)^2 + 4c^2 L_{\max}} + 1\right)^{-1}, \quad (2)$$

where $L_{\min} = \min_j L_j > 0$, $L_{\max} = \max_j L_j > 0$, $\alpha > 0$, and $c \in (0, 1)$. \sharp Nonconvex extensions available in the paper.

Theorem (For ℓ_1 -penalty functions)

Let $\mathcal{A}_k := \{(i, j) : (\bar{\Psi}_k)_{i,j} \neq 0, i \neq j\}$ and $q_k := |\mathcal{A}_k|$ for k = 1, ..., K. If $\lambda_k = O(\sqrt{\frac{d_k \log d}{N}})$ for all k = 1, ..., K, then under regularity conditions specified in the paper, $\exists C > 0$ such that $\forall \eta > 0$ the following holds with probability at least $1 - O(\exp(-\eta \log d))$:

$$\sum_{k=1}^{K} \| offdiag(\hat{\Psi}_k) - offdiag(\bar{\Psi}_k) \|_F \le C\sqrt{K} \max_k \sqrt{q_k} \lambda_k.$$
(3)

Application to solar flare prediction

Construct linear forward predictors for the last frame (at or right before a flare) by using estimated precision matrix from all previous frames, i.e., $\hat{\boldsymbol{\chi}}_{t,:,:,:} = \hat{\boldsymbol{\Omega}}_{2,2}^{-1} \hat{\boldsymbol{\Omega}}_{2,1} \boldsymbol{\chi}_{t-1:t-(p-1),:,:,:}$, where $q = d_{width} \cdot d_{height} \cdot d_{channel}$ and $p = d_{time}$, $\hat{\boldsymbol{\Omega}}_{2,2} \in \mathbb{R}^{q \times q}$, $\hat{\boldsymbol{\Omega}}_{2,1} \in \mathbb{R}^{q \times (p-1)q}$ are submatrices of $\hat{\boldsymbol{\Omega}}$.

Physical interpretation

Consider the 2D spatio-temporal process $u(\mathbf{x}, t)$:

$$\partial u/\partial t = \theta \sum_{i=1}^{2} \partial^2 u/\partial x_i^2 + \epsilon \sum_{i=1}^{2} \partial u/\partial x_i, \tag{4}$$

where θ , ϵ are positive real (unknown) coefficients. This is the basic form of a class of parabolic and hyperbolic PDEs, the Convection-Diffusion equation.

After finite-difference discretization, Equation (4) is equivalent to the Sylvester matrix equation

$$\mathbf{A}_{\theta,\epsilon}\mathbf{U}_t + \mathbf{U}_t\mathbf{A}_{\theta,\epsilon} = \mathbf{U}_{t-1},\tag{5}$$

where $\mathbf{U}_t = (u((i, j), t))_{ij}$ and $\mathbf{A}_{\theta, \epsilon}$ is a tridiagonal matrix with values that depend on the coefficients θ, ϵ and discretization step sizes. This is the same Sylvester equation used for defining the objective function of our graphical model!