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1. Motivation



Motivation

e Two-sample tests:
Given two sets of samples, we determine

whether they come from the same distribution.

e Why do we care about statistical tests?
o Standard ML algorithms should only be
applied in deployment if the test and training
data share the same underlying distribution.
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Motivation

e Challenges with optimized kernel methods for statistical tests:

These methods use a portion of test data to maximize the test power,
and use the rest for testing the hypothesis.

% There will be more computations involved from the training phase.

% If the sample size is much smaller than the data dimension, a fixed
kernel method that uses all the available data for testing could
outperform these optimized methods if the kernel is expressive enough.
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2. Background



Maximum Mean Discrepancy (MMD)

e MMD measures the distance between two
distributions.

Given samples and a kernel, we can empirically
estimate it
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Two-sample hypothesis testing /" Testing Data

e Null hypothesis hog :P=Q ; p
T PEE Bl

e Alternative hypothesis hl P # Q
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We use permutation tests.

% Under the null hypothesis, we shuffle the samples
between two sets to recompute MMD test
statistics, and estimate the sampling distribution.

% If MMD computed with the unshuffled samples is
outside the 0.95 quantile, null hypothesis is
rejected. o 22 23 24 25 26 27 28 29 3.0

MMD: 95%°




Maximum Mean Discrepancy (MMD)
e What kernel can be used?

% Simple fixed kernels such as Gaussian and Laplace kernels.

% Deep kernels that apply a gaussian kernel to the learned features
that maximize the test power wietal, 20201.

% Inthis work, we apply Neural Tangent Kernel (NTK) pacotetal, 20181
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3. Contributions



Our Contributions

e Show conditions under which our simple modifications to Neural Tangent
Kernels for MLP and CNN make them shift-invariant and characteristic.

e Demonstrate that our NTK-based statistical tests provide a competitive
and efficient alternative to current state-of-the-art methods that require a
training phase.
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4. Method: SCNTK for statistical tests



Method: SCNTK for statistical tests

Our kernel is the inner products of the gradients excluding
the first-layer weights.
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With first-layer cosine activations, this allows  cosine
our kernel to be shift-invariant K(x,x')=K(x-x"). activ ““O“‘W




Shift-invariant property for SNTK

e For ageneral MLP, we can use the previous WOrk (aora et al, 2019]
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where the covariances of pre-activation units are defined recursively.
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With cosine activations, the first covariance will be a gaussian kernel, which is
shift-invariant. Hence, the rest of covariances will be shift-invariant.



Characteristic property

Theorem 1 (Sriperumbudur et al. (2010)). Let K, K1, K be shift-invariant kernels that can be expressed as K (x,y) =
U (x — y) where V(-) is a bounded continuous real-valued positive definite function on R%. Suppose K is characteristic
and Ko # 0 Then K + Ky and K - K2 are characteristic.

e Using the theorem, we can see SNTK is shift-invariant since it is a sum of
products of shift-invariant kernels.
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5. Experiments



Comparisons with fixed kernels

Baseline: A gaussian kernel applied to nonlinear features of the data through a
random neural network. MMD-UAE

Dataset: MNIST
MNIST VS Perturbed/Shlfted MNIST data [Rabanser et al., 2019]

shift type: medium gaussian noise shift type: medium rotations and translations
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Comparisons with optimized kernels

Dataset. e MNIST vs GAN generated MNIST e CIFAR10 vs CIFAR10.1

Baselines: e Optimized naive gaussian kernels: ME, SCF, M-O
tuetsl 20200 o Classifier based methods: C2ST-S, C2ST-L
e Deep kernel method: M-D

MNIST  SCNTK ME SCF M-O C2ST-S C2ST-L M-D

200  0.324+0.032 0.414+0050 0.107+0.018 0.188+0010  0.193+0.037 0.234+0031  0.555+0.044
400  0.750+0022 0.92140.032 0.152+0.021 0.363+0017  0.65+0.039  0.706+0.047  0.99640.004
600  0.963+0.018 1.000+0.000 0.294+0.008 0.619+0021  1.000+0.000 0.977+0.012 1.000+0.000
800  1.000+0.000 1.000+0.000 0.317+0.017 0.797+0.015  1.000+0.000 1.000+0.000 1.000+0.000
1000  1.000+0.000 1.0004+0.000 0.346+0.019 0.894+0016  1.000+0.000 1.0004+0.000 1.000+40.000

Avg 0.807 0.867 0.243 0.572 0.768 0.783 0.91
CIFAR SCNTK ME SCF M-O C2ST-S C2ST-L M-D
2000 0.805 0.588 0.171 0.316 0.452 0.529 0.744

SCNTK achieves competitive results without the training phase!



Thanks for your attention!
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