

Knowledge Enhanced Machine Learning Pipeline against Diverse Adversarial Attacks

<u>Nezihe Merve Gürel^{1*}</u> Xiangyu Qi^{2*} Luka Rimanic¹ Ce Zhang¹ Bo Li²

1 DS3Lab of Systems Group, Department of Computer Science, ETH Zurich

2 Secure Learning Lab, Computer Science Department, University of Illinois at Urbana-Champaign

ML models are vulnerable against adversarial attacks! Defenses do exist but they are...

...adaptively attacked again.

...certify robustness within a small l_p perturbation radius

Vulnerability of ML systems

We present

- **Knowledge Enhanced ML Pipeline:** A principled framework to enhance robustness of ML systems
- **Theoretical analysis:** How and when the domain knowledge helps?
- **Empirical study:** Evaluation of our pipeline against 46 different attacks!

Can domain knowledge help

improve the robustness?

Knowledge Enhanced ML Pipeline (KEMLP)

Joint inference model to predict target variable y

Main task model

(Untrusted ML model)

$$f(s_*,o) = \mathbb{I}[s_* \Leftrightarrow o]$$

Permissive knowledge

(Sufficient for inferring {y=1})

$$f(s_i,o)=\mathbb{I}[s_i\Rightarrow o]$$

Preventive knowledge

(Necessary for {y=1})

$$f(s_j,o) = \mathbb{I}[o \Rightarrow s_j]$$

Learning with KEMLP

$$\begin{array}{ll} \mathbb{P}[o = \tilde{y} | s_*, s_{\mathcal{I}}, s_{\mathcal{J}}, w_*, w_{\mathcal{I}}, w_{\mathcal{J}}] & \hat{\mathbf{w}} = \arg\min_{\mathbf{w}} \{ -\sum_n \log \mathbb{P}[o^{(n)} = y^{(n)} | \mathbf{s}, \mathbf{w}] \} \\ \propto \exp \left(w_* f_*(\tilde{o}, s_*) + \sum_{i \in \mathcal{I}} w_i f_i(\tilde{o}, s_i) + \sum_{j \in \mathcal{J}} w_j f_j(\tilde{o}, s_j) \right) & \mathbf{s} := \{ s_k \} \quad \mathbf{w} := \{ w_k \} \quad k \in \{ * \} \cup \mathcal{I} \cup \mathcal{J} \} \end{array}$$

Weight Learning

$$egin{aligned} \hat{\mathbf{w}} &= rg \min_{\mathbf{w}} \{ -\sum_n \log \mathbb{P}[o^{(n)} = y^{(n)} | \mathbf{s}, \mathbf{w}] \} \ \mathbf{s} &:= \{s_k\} \quad \mathbf{w} := \{w_k\} \quad k \in \{*\} \cup \mathcal{I} \cup \mathcal{J} \end{aligned} \qquad \hat{y} = rg \max_{ ilde{y}} \mathbb{P}[o = ilde{y} | \hat{\mathbf{s}}, \hat{\mathbf{w}}] \}$$

Inference

$$\hat{y} = rg \max_{ ilde{y}} \mathbb{P}[o = ilde{y} | \hat{\mathbf{s}}, \hat{\mathbf{w}}]$$

Theoretical Analysis

When domain knowledge enhance the robustness of main task ML model?

Modeling assumptions

For a fixed distribution $\mathcal{D} \in \{\mathcal{D}_{\text{benign}}, \mathcal{D}_{\text{adv}}\}$ and given y, models make independent predictions.

Truth lpha and False ϵ Rates

Main task model: $\alpha_{*,\mathcal{D}} := \text{accuracy}$ Permissive models: $\alpha_{i,\mathcal{D}} := \text{TPR}, \ \epsilon_{i,\mathcal{D}} := \text{FPR}$

Preventative models: $\alpha_{i,\mathcal{D}} := \text{TPR}, \ \epsilon_{i,\mathcal{D}} := \text{FPR}$ $\alpha_{j,\mathcal{D}} := \text{TNR}, \ \epsilon_{j,\mathcal{D}} := \text{FNR}$

Weighted Robust Accuracy

 $\mathcal{A}^{ ext{main}} \quad := \mathbb{E}ig[\mathbb{P}_{\mathcal{D}}[s_* = y]ig]$

 $\mathcal{A}^{ ext{KEMLP}} := \mathbb{E}ig[\mathbb{P}_{\mathcal{D}}[o=y|\mathbf{w}]ig]$

Definition: normalized accuracy of auxiliary models $\gamma_{\mathcal{D}} := \min_{\mathcal{K}, \mathcal{K}' \in \mathcal{I} \cup \mathcal{J}} \mathbb{E}_{k \in \mathcal{K}}[\alpha_{k, \mathcal{D}}] - \mathbb{E}_{k' \in \mathcal{K}'}[\epsilon_{k', \mathcal{D}}]$

Main findings.

- **Factor weights** (influence of a model in joint prediction) $w \geq \log rac{lpha_{
 m adv}(1-\epsilon_{
 m adv})}{\epsilon_{
 m adv}(1-lpha_{
 m adv})}$
- **Converge of KEMLP:** $\mathcal{A}^{ ext{KEMLP}}$ converges to 1 exponentially fast in number of models and $\gamma_{\mathcal{D}}$
- lacksquare **Absolute improvement:** If $\gamma_{\mathcal{D}} > 2\sqrt{rac{1}{ ext{number of models}}\lograc{1}{1-\mathbb{E}[lpha_{*,\mathcal{D}}]}}$ then $\mathcal{A}^{ ext{KEMLP}} > \mathcal{A}^{ ext{main}}$

Experimental validation

Thank You.

46 different attacks/corruptions!

- Physical attacks on stop sign
- Common corruptions: Fog, contrast, brightness
- lacksquare \mathcal{L}_{∞} bounded attacks for various ϵ
- Unforeseen attacks: Fog, Snow, JPEG, Gabor, Elastic

Datasets: LISA, GTSRB

Models: GTRSB-CNN, content/shape/color detectors

Baselines: DOA, Adversarial training

Significant improvement over +40 attacks: an Attack-Agnostic Pipeline!

KEMLP vs. DOA

Blackbox/whitebox setting

KEMLP vs. Main

By incorporating domain knowledge, improvement up to more than 50% in the robust accuracy!