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Markov Decision Process (MDP)
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MDP — modeling ‘uncertainty’

given a state, have different actions that leads to different
transitions and thus different rewards for each step.

MDP - basic RL model, simple in theory\

Elements: state space s € S,
@ distinct states
action space a € A4,
—> two actions per state
probability transition p;, € P
evenly distributed through same-color edges
reward 1y 5 5, € R.
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Markov Decision Process (MDP)

MDP — modeling ‘uncertainty’ MDP - basic RL model, simple in theory
given a state, have different actions that leads to different Elements: state space s € S,
transitions and thus different rewards for each step. @® distinct states

action space a € A,
—> two actions per state

MDP - reward probability transition ps , € P

There are two classical types of infinite-horizon MDP: evenly distributed through same-color edges
7 -discounted MDP (DMDP): discount rewards in future steps reward Ts,a,sr € R.
Average-reward MDP (AMDP): don’t discount, consider average depending on s’ solely
Given policy 77, induce transition probability P™, reward r™ 0.6 0.6

ET , [Zt>1 Vs, a,]81 ~ q] v-discounted ® ®

value = ’ = b C
limy o FET {Zte[T] Tsy.ap|S1 ~ q] average reward
0

GOAL: find 7T that maximizes the value. ®
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MDP

state space s € §,
action spacea € A4,

Markov Decision Process (MDP)

reward r;, € R.

MDP — modeling ‘uncertainty’

given a state, have different actions that leads to different

transitions and thus different rewards for each step. MDP — generative model access

KEY MEASUREMENT: sample complexity
MDP - reward i.e. how many samples to collect in order to find such an
approximately optimal policy?
There are two classical types of infinite-horizon MDP:

7 -discounted MDP (DMDP): discount rewards in future steps
Average-reward MDP (AMDP): don’t discount, consider average

Given policy 77, induce transition probability P™, reward r™

(S’ Cl) -

{Eg,q [Zt>1 ’7t_17"8t,at |51 ~ Q} ~v-discounted
value = =

g 1w
limr o0 7EG {Zte[T] Tsy.ap|S1 ~ q] average reward

GOAL: find 7T that maximizes the value. Ps,a,sr



MDP
Aqor: total state action pair,
y: discount factor in DMDP

SO |Vi n g A I\/l D PS ( p ri O r a rt) tmix: upper bound on mixing time of probability

transition under any given policy, i.e. (P”)tmix ~
1- (v™T, for stationary v™

Problem: Given an MDP, find an e-approximately optimal policy assuming a generative model access.

Upper Bound Lower Bound
Aior  [Li20] Aot [Azarl3]
y-discounted (1—~)3e (1 —7)3e2
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MDP
Aiot: total state action pair,
. y: discount factor in DMDP
SO |V| n g A I\/l D PS ( O u r re S u |tS) tmix: upper bound on mixing time of probability
transition under any given policy , i.e. (P™)tmix ~
1- (v™T, for stationary v™

Problem: Given an MDP, find an e- approximately optimal policy assuming a generative model access.

Upper Bound Lower Bound
2 [in20] . A t. .
average_reward Atottmix AtOttle tOthIX
€2 €3 -
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First characterization of
the problem hardness w.r.t
mixing time ty,ix

Contributions:



Solving AMDPs (our results)

/
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MDP
Aiot: total state action pair,
y: discount factor in DMDP
tmix: upper bound on mixing time of probability
transition under any given policy , i.e. (P™)tmix ~
1- (v™T, for stationary v™

\

)

Problem: Given an MDP, find an e- approximately optimal policy assuming a generative model access.

Upper Bound

AtottQ- Uin20] Atottmix

mix

average-reward

€2 63

Contributions: l

Lower Bound

Atottmix

€2

1. Match lower bound nearly-tightly for constant accuracy €
2. In practice, ty,ix usually scales with S, while e might not
3. Use deterministic oblivious samples, enables parallel computing
4. Weaker mixing assumption: deterministic policy vs. randomized policy
5. (our technique) Build direct connection with DMDPs



MDP

state space s € S, action space a € A4,
probability transition ps , € P, reward 54, € R,

1 . policy 7, probability transition PT,
Te C h n | q u e S . u p p e r b O u n d reward vector r™, unique stationary distribution v™

Problem: Given an MDP, find an eps-approximately optimal policy assuming a generative model access.

Vie =2 >0 vig" (P™)r™ € [0,1/(1 — )]  v-discounted

Recall value
= {(r",v™) € [0,1] average reward



MDP

state space s € S, action space a € A4,
probability transition ps , € P, reward 54, € R,

1 . policy 7, probability transition PT,
Te C h n | q u e S . u p p e r b O u n d reward vector r™, unique stationary distribution v™

Problem: Given an MDP, find an eps-approximately optimal policy assuming a generative model access.

| VAA— toy T PT t,.m 1/(1 — 1
Recall value e =20 (PT)'rm€]0,1/(1—~)]  ~-discounted
Vi ={r",v7) € [0,1] average reward

KEY Lemma: [V™ — (1 — ﬂy)V&fq| < 3(1 — ) tmix



MDP

state space s € S, action space a € A4,
probability transition ps , € P, reward 54, € R,

1 . policy 7, probability transition PT,
Te C h n | q u e S . u p p e r b O u n d reward vector r™, unique stationary distribution v™

Problem: Given an MDP, find an eps-approximately optimal policy assuming a generative model access.

VT = ty T PT t,.m 1/(1 — 1
Recall value v,q tho Yiq' (P™)r™ € [0,1/( )] ~v-discounted
Vi ={r",v7) € [0,1] average reward

KEY Lemma: |[V™ — (1 — ”y)ng| < 3(1 — ) tmix

Implications: reduce solving AMDPs to solving DMDPs with v = 1 — O(€/tmix) to accuracy € = O( -

Choice of
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Techniques: lower bound

Hard Instance Construction:

modified from the hard instance in DMD
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MDP
state space s € S, action space a € A4,
probability transition pg , € P, rewardr;, € R,
policy 7, probability transition P,
reward vector ™, unique stationary distribution v™
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Techniques: lower bound

Hard Instance Construction:

level 1: N states, each has K actions that
transit to different states at level 2

MDP
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state space s € S, action space a € A4,
probability transition pg , € P, rewardr;, € R,
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Techniques: lower bound

Hard Instance Construction:

KEY structure:

level 1: N states, each has K actions that
transit to different states at level 2

level 2: each state has 1 — y refreshing probability,

y(1 — p) probability to level 3

level 3: each state has 1 — y refreshing probability,
y probability staying

MDP
state space s € S, action space a € A4,
probability transition pg , € P, rewardr;, € R,
policy 7, probability transition P,
reward vector ™, unique stationary distribution v™

modified from the hard instance in DMDP %3]

7 ~
Ay ~o

M \ \
a, o '3\

~
R N
AN
S N
ifor e N Ay
y niformly . N
_ i} \ \
: \ \

, ) o . : = YP(it al)s
@@ I C @ ® O Lo V) =91 =pgan);
a, L // \\ ‘ l // p(‘ N) =1- Y
r|=0. e L
® O ®F ()=
0 Q () =1-7.

[Azar13] Azar, Mohammad Gheshlaghi, RéEmi Munos, and Hilbert J. Kappen. "Minimax PAC bounds on the sample complexity of reinforcement learning with a generative model." Machine
learning 91.3 (2013): 325-349.



MDP

state space s € S, action space a € A4,
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KEY structure:
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state space s € S, action space a € A4,
probability transition ps , € P, reward 54, € R,

1 . policy 7, probability transition PT,
Te C h n | q u e S . | Owe r b O u n d reward vector r™, unique stationary distribution v™

Hard Instance Construction: modified from the hard instance in DMDP %3]

KEY structure:

p=",p" =7+el—7)
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OPEN PROBLEMs: Can we obtain tight upper bounds?
Can we characterize AMDP hardness with measurements other than mixing time tix?
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