Towards Tight Bounds on the Sample Complexity of Average-reward MDPs

Yujia Jin, Aaron Sidford

ICML 2021, online

Markov Decision Process (MDP)

MDP - modeling 'uncertainty'

given a state, have different actions that leads to different transitions and thus different rewards for each step.

MDP - basic RL model, simple in theory

Elements: state space $s \in S$,

distinct states

action space $a \in A$,

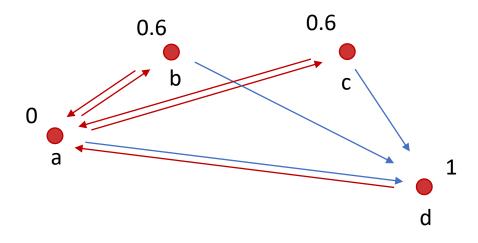
two actions per state

probability transition $p_{s,a} \in P$

evenly distributed through same-color edges

reward $r_{s,a,s'} \in R$.

depending on s' solely



Markov Decision Process (MDP)

MDP - modeling 'uncertainty'

given a state, have different actions that leads to different transitions and thus different rewards for each step.

MDP - reward

There are two classical types of infinite-horizon MDP:

 γ -discounted MDP (DMDP): discount rewards in future steps Average-reward MDP (AMDP): don't discount, consider average

Given policy π , induce transition probability P^π , reward r^π

value =
$$\begin{cases} \mathbb{E}_{\gamma,q}^{\pi} \left[\sum_{t \geq 1} \gamma^{t-1} r_{s_t,a_t} | s_1 \sim q \right] & \gamma\text{-discounted} \\ \lim_{T \to \infty} \frac{1}{T} \mathbb{E}_q^{\pi} \left[\sum_{t \in [T]} r_{s_t,a_t} | s_1 \sim q \right] & \text{average reward} \end{cases}$$

GOAL: find π that maximizes the value.

MDP - basic RL model, simple in theory

Elements: state space $s \in S$,

distinct states

action space $a \in A$,

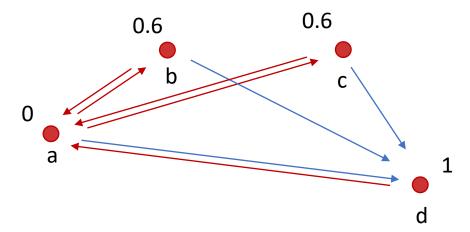
two actions per state

probability transition $p_{s,a} \in P$

evenly distributed through same-color edges

reward $r_{s,a,s'} \in R$.

depending on s' solely



MDP

state space $s \in S$, action space $a \in A$, probability transition $p_{s,a} \in P$, reward $r_{s,a} \in R$.

Markov Decision Process (MDP)

MDP - modeling 'uncertainty'

given a state, have different actions that leads to different transitions and thus different rewards for each step.

MDP - reward

There are two classical types of infinite-horizon MDP:

 γ -discounted MDP (DMDP): discount rewards in future steps Average-reward MDP (AMDP): don't discount, consider average

Given policy π , induce transition probability P^π , reward r^π

value =
$$\begin{cases} \mathbb{E}_{\gamma,q}^{\pi} \left[\sum_{t \geq 1} \gamma^{t-1} r_{s_t,a_t} | s_1 \sim q \right] & \gamma\text{-discounted} \\ \lim_{T \to \infty} \frac{1}{T} \mathbb{E}_q^{\pi} \left[\sum_{t \in [T]} r_{s_t,a_t} | s_1 \sim q \right] & \text{average reward} \end{cases}$$

GOAL: find π that maximizes the value.

MDP – generative model access

KEY MEASUREMENT: sample complexity

i.e. how many samples to collect in order to find such an approximately optimal policy?

$$(s,a) \longrightarrow s'$$

 $p_{s,a,s'}$

Solving AMDPs (prior art)

MDP

 $A_{ ext{tot}}$: total state action pair, γ : discount factor in DMDP $t_{ ext{mix}}$: upper bound on mixing time of probability transition under any given policy , i.e. $(P^{\pi})^{t_{mix}} \approx 1 \cdot (v^{\pi})^{T}$, for stationary v^{π}

Problem: Given an MDP, find an ϵ -approximately optimal policy assuming a generative model access.

Upper Bound

 γ -discounted

$$\frac{A_{\mathrm{tot}}}{(1-\gamma)^3\epsilon^2}$$
[Li20]

Lower Bound

$$rac{A_{
m tot}}{(1-\gamma)^3\epsilon^2}$$
[Azər13]

[Li20] Li, Gen, et al. "Breaking the sample size barrier in model-based reinforcement learning with a generative model." Advances in Neural Information Processing Systems 33 (2020). [Azar13] Azar, Mohammad Gheshlaghi, Rémi Munos, and Hilbert J. Kappen. "Minimax PAC bounds on the sample complexity of reinforcement learning with a generative model." *Machine learning* 91.3 (2013): 325-349.

[Jin20] Jin, Yujia, and Aaron Sidford. "Efficiently Solving MDPs with Stochastic Mirror Descent." International Conference on Machine Learning. PMLR, 2020.

Solving AMDPs (prior art)

MDP

 $A_{ ext{tot}}$: total state action pair, γ : discount factor in DMDP $t_{ ext{mix}}$: upper bound on mixing time of probability transition under any given policy , i.e. $(P^{\pi})^{t_{mix}} \approx 1 \cdot (v^{\pi})^{T}$, for stationary v^{π}

Problem: Given an MDP, find an ϵ - approximately optimal policy assuming a generative model access.

	Upper Bound	Lower Bound
γ -discounted	$rac{A_{ m tot}}{(1-\gamma)^3\epsilon^2}$ [Li20]	$rac{A_{ m tot}}{(1-\gamma)^3\epsilon^2}$ [Azar13]
average-reward	$rac{A_{ m tot}t_{ m mix}^2}{\epsilon^2}$ [Jin20]	??

[Li20] Li, Gen, et al. "Breaking the sample size barrier in model-based reinforcement learning with a generative model." Advances in Neural Information Processing Systems 33 (2020). [Azar13] Azar, Mohammad Gheshlaghi, Rémi Munos, and Hilbert J. Kappen. "Minimax PAC bounds on the sample complexity of reinforcement learning with a generative model." *Machine learning* 91.3 (2013): 325-349.

[Jin20] Jin, Yujia, and Aaron Sidford. "Efficiently Solving MDPs with Stochastic Mirror Descent." International Conference on Machine Learning. PMLR, 2020.

Solving AMDPs (our results)

MDP

 $A_{ ext{tot}}$: total state action pair, γ : discount factor in DMDP $t_{ ext{mix}}$: upper bound on mixing time of probability transition under any given policy , i.e. $(P^{\pi})^{t_{mix}} \approx 1 \cdot (v^{\pi})^{T}$, for stationary v^{π}

Problem: Given an MDP, find an ϵ - approximately optimal policy assuming a generative model access.

Upper Bound

average-reward

$$rac{A_{
m tot}t_{
m mix}^2}{\epsilon^2}$$
 [Jin20] $rac{A_{
m tot}t_{
m mix}}{\epsilon^3}$

Lower Bound

$$\left| rac{A_{
m tot}t_{
m mix}}{\epsilon^2}
ight|$$

-

Contributions:

First characterization of the problem hardness w.r.t mixing time $t_{
m mix}$

Solving AMDPs (our results)

MDP

 A_{tot} : total state action pair, γ : discount factor in DMDP t_{mix} : upper bound on mixing time of probability transition under any given policy , i.e. $(P^{\pi})^{t_{mix}} \approx 1 \cdot (v^{\pi})^{T}$, for stationary v^{π}

Problem: Given an MDP, find an ϵ - approximately optimal policy assuming a generative model access.

Upper Bound

average-reward

$$rac{A_{
m tot}t_{
m mix}^2}{\epsilon^2}$$
 [Jin20] $\left(rac{A_{
m tot}t_{
m mix}}{\epsilon^3}
ight)$

Lower Bound

$$\frac{A_{\rm tot}t_{\rm mix}}{\epsilon^2}$$

Contributions:

- 1. Match lower bound nearly-tightly for constant accuracy ϵ
- 2. In practice, t_{mix} usually scales with S, while ϵ might not
- 3. Use deterministic oblivious samples, enables parallel computing
- 4. Weaker mixing assumption: deterministic policy vs. randomized policy
 - 5. (our technique) Build direct connection with DMDPs

Techniques: upper bound

MDP

state space $s \in S$, action space $a \in A$, probability transition $p_{s,a} \in P$, reward $r_{s,a} \in R$, policy π , probability transition P^{π} , reward vector r^{π} , unique stationary distribution v^{π}

Problem: Given an MDP, find an eps-approximately optimal policy assuming a generative model access.

Recall value
$$\begin{cases} V_{\gamma,q}^{\pi} = \sum_{t \geq 0} \gamma^t q^{\top} (P^{\pi})^t r^{\pi} \in [0,1/(1-\gamma)] & \gamma\text{-discounted} \\ V^{\pi} = \langle r^{\pi}, \nu^{\pi} \rangle \in [0,1] & \text{average reward} \end{cases}$$

Techniques: upper bound

MDP

state space $s \in S$, action space $a \in A$, probability transition $p_{s,a} \in P$, reward $r_{s,a} \in R$, policy π , probability transition P^{π} , reward vector r^{π} , unique stationary distribution v^{π}

Problem: Given an MDP, find an eps-approximately optimal policy assuming a generative model access.

Recall value
$$\begin{cases} V_{\gamma,q}^{\pi} = \sum_{t \geq 0} \gamma^t q^{\top} (P^{\pi})^t r^{\pi} \in [0,1/(1-\gamma)] & \gamma\text{-discounted} \\ V^{\pi} = \langle r^{\pi}, \nu^{\pi} \rangle \in [0,1] & \text{average reward} \end{cases}$$

KEY Lemma : $|V^{\pi} - (1-\gamma)V^{\pi}_{\gamma,q}| \leq 3(1-\gamma)t_{\text{mix}}$

MDP

state space $s \in S$, action space $a \in A$, probability transition $p_{s,a} \in P$, reward $r_{s,a} \in R$, policy π , probability transition P^{π} , reward vector r^{π} , unique stationary distribution v^{π}

Techniques: upper bound

Problem: Given an MDP, find an eps-approximately optimal policy assuming a generative model access.

Recall value
$$\begin{cases} V^{\pi}_{\gamma,q} = \sum_{t \geq 0} \gamma^t q^{\top} (P^{\pi})^t r^{\pi} \in [0,1/(1-\gamma)] & \gamma\text{-discounted} \\ V^{\pi} = \langle r^{\pi}, \nu^{\pi} \rangle \in [0,1] & \text{average reward} \end{cases}$$

KEY Lemma: $|V^{\pi} - (1-\gamma)V^{\pi}_{\gamma,q}| \leq 3(1-\gamma)t_{\text{mix}}$

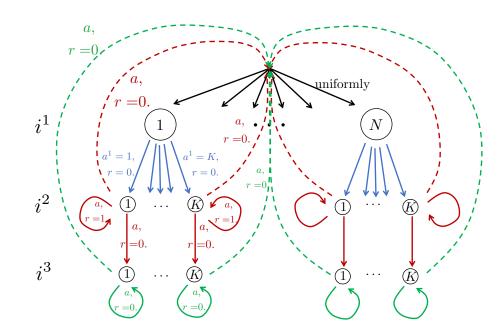
Implications: reduce solving AMDPs to solving DMDPs with $\gamma=1-\Theta(\epsilon/t_{\mathrm{mix}})$ to accuracy $\varepsilon=\Theta(\frac{\epsilon}{1-\gamma})$

$$\overset{\text{solver}}{\Longrightarrow} \frac{SA}{(1-\gamma)^3\varepsilon^2} \overset{\text{Choice of}}{\Longrightarrow} \frac{SAt_{\text{mix}}}{\epsilon^3}$$

MDP

state space $s \in S$, action space $a \in A$, probability transition $p_{s,a} \in P$, reward $r_{s,a} \in R$, policy π , probability transition P^{π} , reward vector r^{π} , unique stationary distribution v^{π}

Hard Instance Construction: modified from the hard instance in DMDP [Azar13]



$$p(\bigcirc) = \gamma p_{(i^1, a^1)},$$

$$p(\downarrow) = \gamma (1 - p_{(i^1, a^1)}),$$

$$p(\frown) = 1 - \gamma.$$

$$p(\circlearrowleft) = \gamma,$$

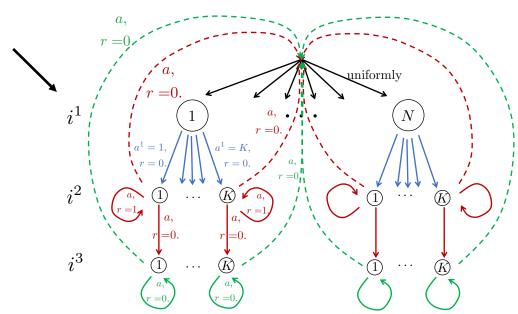
$$p(\circlearrowleft) = 1 - \gamma.$$

MDP

state space $s \in S$, action space $a \in A$, probability transition $p_{s,a} \in P$, reward $r_{s,a} \in R$, policy π , probability transition P^{π} , reward vector r^{π} , unique stationary distribution v^{π}

Hard Instance Construction: modified from the hard instance in DMDP [Azar13]

level 1: N states, each has K actions that transit to different states at level 2



$$p(\circlearrowleft) = \gamma p_{(i^1, a^1)},$$

$$p(\downarrow) = \gamma (1 - p_{(i^1, a^1)}),$$

$$p(\circlearrowleft) = 1 - \gamma.$$

$$p(\circlearrowleft) = \gamma,$$

$$p(\circlearrowleft) = 1 - \gamma.$$

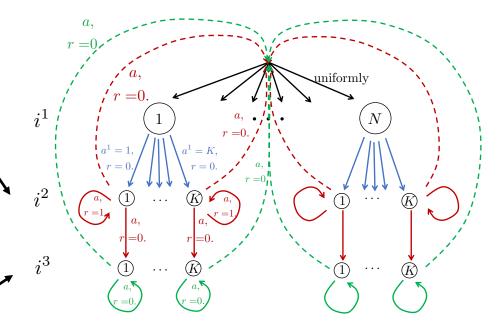
MDP

state space $s \in S$, action space $a \in A$, probability transition $p_{s,a} \in P$, reward $r_{s,a} \in R$, policy π , probability transition P^{π} , reward vector r^{π} , unique stationary distribution v^{π}

Hard Instance Construction: modified from the hard instance in DMDP [Azar13]

level 2: each state has $1 - \gamma$ refreshing probability, γp probability staying, $\gamma (1 - p)$ probability to level 3

level 3: each state has $1 - \gamma$ refreshing probability, γ probability staying



 $p(\bigcirc) = \gamma p_{(i^1, a^1)},$ $p(\downarrow) = \gamma (1 - p_{(i^1, a^1)}),$ $p(\frown) = 1 - \gamma.$

$$p(\circlearrowleft) = \gamma,$$

$$p(\circlearrowleft) = 1 - \gamma.$$

MDP

state space $s \in S$, action space $a \in A$, probability transition $p_{s,a} \in P$, reward $r_{s,a} \in R$, policy π , probability transition P^{π} , reward vector r^{π} , unique stationary distribution v^{π}

Hard Instance Construction: modified from the hard instance in DMDP [Azar13]

KEY structure:

level 1: N states, each has K actions that transit to different states at level 2

only transition with instant reward 1

—> GOAL: hide a best p* among p in each K actions

level 2: each state has $1 - \gamma$ refreshing probability, γp probability staying, $\gamma (1 - p)$ probability to level 3

 i^{1} i^{1} i^{2} i^{2} i^{3} i^{2} i^{3} i^{3} i^{4} i^{5} i^{5

 $p(\circlearrowleft) = \gamma p_{(i^1, a^1)},$ $p(\mathrel{\checkmark}) = \gamma (1 - p_{(i^1, a^1)}),$ $p(\mathrel{\checkmark}) = 1 - \gamma.$

 $p(\circlearrowleft) = \gamma,$ $p(\circlearrowleft) = 1 - \gamma.$

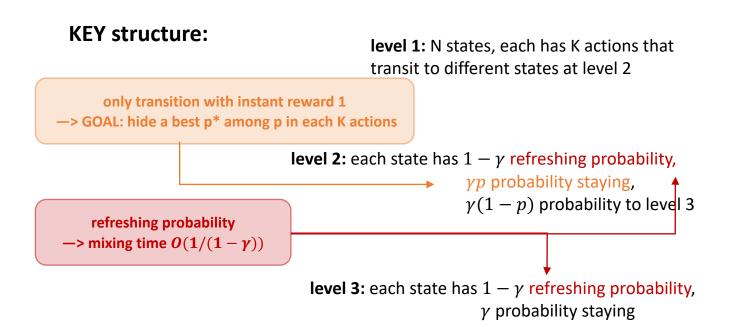
level 3: each state has $1 - \gamma$ refreshing probability, γ probability staying

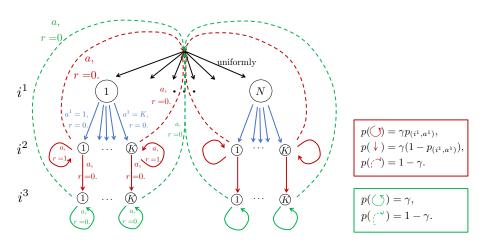
MDP

state space $s \in S$, action space $a \in A$, probability transition $p_{s,a} \in P$, reward $r_{s,a} \in R$, policy π , probability transition P^{π} , reward vector r^{π} , unique stationary distribution v^{π}

Techniques: lower bound

Hard Instance Construction: modified from the hard instance in DMDP [Azar13]





MDP

state space $s \in S$, action space $a \in A$, probability transition $p_{s,a} \in P$, reward $r_{s,a} \in R$, policy π , probability transition P^{π} , reward vector r^{π} , unique stationary distribution v^{π}

Hard Instance Construction: modified from the hard instance in DMDP [Azar13]

KEY structure:

only action with instant reward 1

-> GOAL: hide a best p* among p in each K actions

$$p = \gamma, p^* = \gamma + \epsilon(1 - \gamma)$$

Multi-armed bandit lower bound for "best-arm identification"

$$\implies K \cdot \frac{1}{(1-\gamma)\epsilon^2}$$
 samples to find one best action

MDP

state space $s \in S$, action space $a \in A$, probability transition $p_{s,a} \in P$, reward $r_{s,a} \in R$, policy π , probability transition P^{π} , reward vector r^{π} , unique stationary distribution v^{π}

Techniques: lower bound

Hard Instance Construction: modified from the hard instance in DMDP [Azar13]

KEY structure:

only action with instant reward 1

-> GOAL: hide a best p* among p in each K actions

$$p = \gamma, p^* = \gamma + \epsilon(1 - \gamma)$$

Multi-armed bandit lower bound for "best-arm identification"

$$\implies K \cdot \frac{1}{(1-\gamma)\epsilon^2}$$
 samples to find one best action

refreshing probability —> mixing time $O(1/(1-\gamma))$

$$\implies \Omega(K \cdot \frac{t_{\text{mix}}}{\epsilon^2})$$
 samples to find one best action

find ϵ -optimal policy \Longrightarrow find $\Omega(N)$ best actions for level-1 states \Longrightarrow require samples $\Omega(NK\frac{t_{\text{mix}}}{\epsilon^2})$

Solving AMDPs (prior art)

MDP

 $A_{ ext{tot}}$: total state action pair, γ : discount factor in DMDP $t_{ ext{mix}}$: upper bound on mixing time of probability transition under any given policy , i.e. $(P^{\pi})^{t_{mix}} \approx 1 \cdot (v^{\pi})^{T}$, for stationary v^{π}

Problem: Given an MDP, find an ϵ - approximately optimal policy assuming a generative model access.

Upper Bound

 γ -discounted

average-reward

 $rac{A_{
m tot}}{(1-\gamma)^3\epsilon^2}$ [Li20]

$$rac{A_{
m tot}t_{
m mix}^2}{\epsilon^2}$$
 [Jin20] $rac{A_{
m tot}t_{
m mix}}{\epsilon^3}$

Lower Bound

$$rac{A_{
m tot}}{(1-\gamma)^3\epsilon^2}$$
[Azar13]

??
$$\frac{A_{\text{tot}}t_{\text{mix}}}{\epsilon^2}$$

Solving AMDPs (prior art)

MDP

 $A_{ ext{tot}}$: total state action pair, γ : discount factor in DMDP $t_{ ext{mix}}$: upper bound on mixing time of probability transition under any given policy , i.e. $(P^{\pi})^{t_{mix}} \approx 1 \cdot (v^{\pi})^{T}$, for stationary v^{π}

Problem: Given an MDP, find an ϵ - approximately optimal policy assuming a generative model access.

OPEN PROBLEMs: Can we obtain tight upper bounds?

Can we characterize AMDP hardness with measurements other than mixing time $t_{
m mix}$?

Thank You

Towards Tight Bounds on the Sample Complexity of Average-reward MDPs

Yujia Jin, Aaron Sidford