ARMS: Antithetic-REINFORCE-Multi-Sample Gradient for Binary Variables

Alek Dimitriev

Mingyuan Zhou

University of Texas at Austin, McCombs School of Business

Table of Contents

(1) Motivation
(2) Background

- Baseline gradients
- (Dis)ARM
- Copulas
(3) ARMS
- Two sample estimator
- Multi sample estimator
- Antithetic Copulas
(4) Results

Monte Carlo objectives

Goal: expectation based objectives of the form $\mathbb{E}_{p_{\phi}(x)}[f(x)]$
Can be found in many areas:

- Variational inference: $\mathbb{E}_{q_{\phi}(z \mid x)}\left[\ln p(x, z)-\ln q_{\phi}(z \mid x)\right]$
- Reinforcement learning: $\mathbb{E}_{\pi_{\phi}(x)}\left[\sum_{t=0}^{T} \gamma^{t} r\left(s_{t}, a_{t}\right)\right]$
- Finance (options pricing): $\mathbb{E}_{p_{s_{0}}\left(s_{T}\right)}\left[e^{-\gamma T} \max \left\{s_{T}-K, 0\right\}\right]$
- Operations research (discrete queuing): $\mathbb{E}_{p_{\phi}\left(y_{1: T}\right)}\left[\frac{\sum_{t=1}^{T} L_{t}\left(y_{1: t}\right)}{\tau\left(y_{1: T}\right)}\right]$
- Experimental design: $\mathbb{E}_{p_{\phi}(y)}\left[\mathbb{1}_{y<y_{\text {best }}}\right]$
- Et al. SDEs, GANs, bandits and online learning, econometrics, instrumental variables, counterfactual reasoning, ...

Discrete variational autoencoder

- Maximize evidence lower bound (ELBO):

$$
\mathcal{L}_{\text {ELBO }}=\mathbb{E}_{q_{\phi}(z \mid x)}\left[\ln p_{\theta}(\boldsymbol{z}, \boldsymbol{x})-\ln q_{\phi}(z \mid \boldsymbol{x})\right] \leq \ln p(\boldsymbol{x})
$$

- Equivalent to minimizing $K L$ divergence $\operatorname{KL}(q(\boldsymbol{z} \mid \boldsymbol{x}) \| p(\boldsymbol{z} \mid \boldsymbol{x})$
- $q(\boldsymbol{z} \mid \boldsymbol{x})$ is called an encoder, usually deep neural network $\boldsymbol{x} \rightarrow \boldsymbol{\phi}$
- $p(\boldsymbol{x} \mid \boldsymbol{z})$ is a decoder, also neural network
- $p(z)$ is a prior distribution
- In a discrete VAE $q(\boldsymbol{z} \mid \boldsymbol{x})=\prod_{d=1}^{D} \operatorname{Bern}\left(z_{d} \mid \sigma\left(\phi_{d}\right)\right)$, with logits ϕ

Monte Carlo gradients

- Why Monte Carlo gradients?
- Most expectations are too complicated to integrate
- Why the score function (REINFORCE) gradient?
- Most general, works with almost any distribution:

$$
\nabla_{\phi} \mathbb{E}_{p_{\phi}(x)}[f(x)]=\mathbb{E}_{p_{\phi}(x)}\left[f(x) \nabla_{\phi} \ln p_{\phi}(x)\right]
$$

- Unbiased: $E\left[g_{R F}(x)\right]=E\left[f(x) \nabla_{\phi} \ln p_{\phi}(x)\right]=\nabla_{\phi}$

Table of Contents

(1) Motivation

(2) Background

- Baseline gradients
- (Dis)ARM
- Copulas
(3) ARMS
- Two sample estimator
- Multi sample estimator
- Antithetic Copulas
(4) Results

Estimators for binary variables

- General REINFORCE: $f(z) \nabla \ln p_{\phi}(z)$. What if z is binary?
- Let $b \sim \operatorname{Bern}(p), p=\sigma(\phi)$.
- REINFORCE: $g_{\text {RF }}=f(b)(b-p)$.
- What if we have n independent samples?
- LOORF (Leave One Out REINFORCE):

$$
g_{\mathrm{LOORF}}=\frac{1}{n-1} \sum_{i=1}^{n}\left(f\left(b_{i}\right)-\frac{1}{n} \sum_{j=1}^{n} f\left(b_{j}\right)\right)\left(b_{i}-p\right)
$$

Antithetic estimators for binary variables

- What if we want to use antithetic (negatively correlated) pairs?
- If $u \sim \operatorname{Unif}(0,1)$, then $\mathbb{1}_{u<p} \sim \operatorname{Bern}(p)$.
- ARM: $g_{\text {ARM }}=\left(f\left(\mathbb{1}_{u<p}\right)-f\left(\mathbb{1}_{u>1-p}\right)\right)\left(\frac{1}{2}-u\right)$.
- Let $b=\mathbb{1}_{u<p}, b^{\prime}=\mathbb{1}_{u>1-p}$.
- DisARM/U2G noticed randomness can be integrated out:

$$
g_{\text {DisARM }}=\frac{1}{2}\left(f(b)-f\left(b^{\prime}\right)\right)\left(b-b^{\prime}\right) \max (p, 1-p)
$$

Copulas

- n-dimensional or multivariate probability distribution with uniform marginals.
- $\boldsymbol{u}=\left(u_{1}, \ldots, u_{n}\right) \sim \mathcal{C}_{n}$, such that $\forall i: u_{i} \sim \operatorname{Unif}(0,1)$.
- How to create a copula?
- Start with some multivariate distribution \mathcal{M}.
- Calculate all marginal CDFs: $\forall i: F_{x_{i}}(x)$.
- Apply them to any sample: $\boldsymbol{x}=\left(x_{1}, \ldots, x_{n}\right) \sim \mathcal{M}$.
- $\boldsymbol{u}=\left(u_{1}, . ., u_{n}\right)$, where $u_{i}=F_{x_{i}}\left(x_{i}\right)$, is a copula sample.

Table of Contents

(1) Motivation

(2) Background

- Baseline gradients
- (Dis)ARM
- Copulas
(3) ARMS
- Two sample estimator
- Multi sample estimator
- Antithetic Copulas
(4) Results

Approach

- n independent samples (LOORF) perform better than $n / 2$ antithetic pairs (DisARM)
- Is it possible to combine the two approaches?
- Yes! If we can:
- Sample n antithetic variables
- Debias the estimator

Similarities

- LOORF for $n=2$? $b, b^{\prime} \sim \operatorname{Bern}(p)$

$$
g_{2-\mathrm{LOORF}}=\frac{1}{2}\left(f(b)-f\left(b^{\prime}\right)\right)\left(b-b^{\prime}\right)
$$

- DisARM for $b=\mathbb{1}_{u<p}, b^{\prime}=\mathbb{1}_{(1-u)<p}$

$$
g_{\text {DisARM }}=\frac{1}{2}\left(f(b)-f\left(b^{\prime}\right)\right)\left(b-b^{\prime}\right) \max (p, 1-p)
$$

- Two extremes: no correlation \longleftrightarrow minimal correlation (antithetic).
- Can we generalize to an arbitrarily dependent Bernoulli pair? Yes!

Antithetic Reinforce Two Sample (ARTS) Estimator

- Let $\left(b, b^{\prime}\right) \sim \mathcal{B}_{2}(p)$ denote a sample from a bivariate Bernoulli distribution with correlation $\rho=\operatorname{corr}\left(b, b^{\prime}\right)$.
- An unbiased estimator is:

$$
g_{\text {ARTS }}=\frac{g_{2 L O O R F}}{1-\rho}=\frac{1}{2}\left(f(b)-f\left(b^{\prime}\right)\right)\left(b-b^{\prime}\right) \frac{1}{1-\rho}
$$

- If $\rho=0$, we obtain two sample LOORF.
- What is the lowest possible correlation for a Bernoulli pair b, b^{\prime} ?
- $\rho=-\min \left(\frac{p}{1-p}, \frac{1-p}{p}\right)$, which results in DisARM.

How to go from two to n samples?

- Key observation: LOORF is exactly the same as averaging all $\binom{n}{2}$ pairs!

$$
\begin{aligned}
& g_{\text {LOORF }}\left(b_{1}, \ldots, b_{n}\right)=\frac{1}{n} \sum_{i=1}^{n}\left(f\left(b_{i}\right)-\frac{1}{n} \sum_{j=1}^{n} f\left(b_{j}\right)\right) \nabla_{\phi} \ln p\left(b_{i}\right) \\
& =\frac{1}{n(n-1)} \sum_{i \neq j} \frac{1}{2}\left(f\left(b_{i}\right)-f\left(b_{j}\right)\right)\left(\nabla_{\phi} \ln p\left(b_{i}\right)-\nabla_{\phi} \ln p\left(b_{j}\right)\right) \\
& =\frac{1}{n(n-1)} \sum_{i \neq j} g_{2-\operatorname{LOORF}}\left(b_{i}, b_{j}\right)
\end{aligned}
$$

- Idea: what if the debiasing term is identical for all pairs?

ARMS

- Assume we have n Bernoulli variables, with $\rho=\operatorname{corr}\left(b_{i}, b_{j}\right), \forall i \neq j$.
- An unbiased gradient is:

$$
g_{\text {ARMS }}=\frac{g_{\text {LOORF }}}{1-\rho}=\frac{1}{n-1} \sum_{i=1}^{n}\left(f\left(b_{i}\right)-\frac{1}{n} \sum_{j=1}^{n} f\left(b_{j}\right)\right) \frac{b_{i}-p}{1-\rho}
$$

- Last hurdle: how to sample n antithetic Bernoulli?
- If we have n antithetic uniform variables.
- Then $b_{i}=\mathbb{1}_{u_{i}<p}$ are antithetic Bernoulli.
- How to obtain n antithetic uniform variables? Copulas!
- (Sidenote: must also be able to calculate rho)

Antithetic Gaussian copula

- Gaussian copula: numerical marginal and bivariate CDFs.
- Sample $\left(x_{1}, \ldots, x_{n}\right) \sim \mathcal{N}(0, \Sigma)$, with $\Sigma_{i j}=1, \Sigma_{i j}=-1 /(n-1)$.
- Let $u_{i}=\Phi\left(x_{i}\right)$, where $\Phi(x)$ is the standard Gaussian CDF.
- $\left(u_{1}, \ldots, u_{n}\right)$ is a copula with pairwise correlation close to to $\rho_{\text {min }}$.
- The correlation between to Bernoulli variables is: $\rho=\frac{\mathbb{E}\left[b_{i} b_{j}\right]-p^{2}}{p(1-p)}$
- $E\left[b_{i} b_{j}\right]=P\left(b_{i}=b_{j}=1\right)=P\left(u_{i}<p, u_{j}<p\right)=\Phi(p, p)$.

Antithetic Dirichlet copula

- When $\alpha=1$, we have both a analytical marginal and bivariate CDF.
- Sample $\left(d_{1}, \ldots, d_{n}\right) \sim \operatorname{Dir}(1, \ldots, 1)$.
- Can alternatively do the following:
- 1. $v_{i} \sim \operatorname{Unif}(0,1), i=1 \ldots n$
- 2. $d_{i}=\ln \left(v_{i}\right) / \sum_{j=1}^{n} \ln \left(v_{j}\right)$
- $u_{i}=1-\left(1-d_{i}\right)^{n-1}$
- $\rho=\frac{\max \left(0,2(1-p)^{\frac{1}{n-1}}-1\right)^{n-1}-(1-p)^{2}}{p(1-p)}$

How good are the correlations?

Putting it all together

(1) Sample n antithetic uniform variables (either Dirichlet or Gaussian)
(2) Transform to Bernoulli $b_{i}=\mathbb{1}_{u_{i}<p}$ and calculate ρ
(3) Obtain an unbiased estimator ARMS:

$$
g_{\mathrm{ARMS}}=\frac{1}{n-1} \sum_{i=1}^{n}\left(f\left(b_{i}\right)-\frac{1}{n} \sum_{j=1}^{n} f\left(b_{j}\right)\right) \frac{b_{i}-p}{1-\rho}
$$

Table of Contents

(1) Motivation

(2) Background

- Baseline gradients
- (Dis)ARM
- Copulas
(3) ARMS
- Two sample estimator
- Multi sample estimator
- Antithetic Copulas

4 Results

Toy example

- Maximize: $\mathcal{E}(\phi)=\mathbb{E}_{b}\left[(b-0.499)^{2}\right], \quad b \sim \operatorname{Bern}(\sigma(\phi))$
- Below: variance (all already unbiased) of each gradient as the function is maximized from $p_{\text {init }}=0.05$ to $p_{\text {end }}=0.95$.

Training ELBO

SAMPLES			ARMS-D	ARMS-N	LOORF	DISARM	RELAX
52220222		4	-112.13 ± 0.10	-111.96 ± 0.09	-112.32 ± 0.04	-113.26 ± 0.05	-112.98 ± 0.25
		6	-111.03 ± 0.02	$\mathbf{- 1 1 0 . 8 9} \pm 0.07$	-110.99 ± 0.07	-112.11 ± 0.03	-111.46 ± 0.06
		8	-110.30 ± 0.04	-110.62 ± 0.06	-110.42 ± 0.04	-111.78 ± 0.07	-110.58 ± 0.01
		10	-110.08 ± 0.05	-110.14 ± 0.09	-110.17 ± 0.04	-111.08 ± 0.11	-110.17 ± 0.09
		4	-98.65 ± 0.16	-98.97 ± 0.13	$\mathbf{- 9 8 . 6 2} \pm 0.05$	-100.45 ± 0.16	-100.52 ± 0.08
		6	-98.53 ± 0.13	-97.87 ± 0.01	-98.14 ± 0.18	-99.28 ± 0.11	-99.17 ± 0.17
		8	$\mathbf{- 9 7 . 9 0} \pm 0.12$	-97.89 ± 0.10	-98.14 ± 0.21	-98.69 ± 0.21	-98.80 ± 0.02
		10	-97.64 ± 0.06	-97.32 ± 0.11	-97.50 ± 0.29	-98.62 ± 0.12	-98.69 ± 0.07
FASHION MNIST		4	$\mathbf{- 2 5 2 . 5 6} \pm 0.11$	-252.69 ± 0.06	-252.71 ± 0.09	-254.02 ± 0.05	-253.53 ± 0.06
		6	-251.94 ± 0.13	-251.73 ± 0.05	-252.03 ± 0.08	-252.97 ± 0.06	-252.31 ± 0.14
		8	-251.32 ± 0.11	-251.11 ± 0.23	-251.41 ± 0.10	-252.57 ± 0.05	-251.36 ± 0.08
		10	-251.29 ± 0.02	$\mathbf{- 2 5 1 . 0 8} \pm 0.08$	-251.26 ± 0.03	-251.75 ± 0.21	$\mathbf{- 2 5 1 . 1 6} \pm \mathbf{0 . 0 6}$
		4	-235.65 ± 0.12	-235.75 ± 0.06	-235.80 ± 0.07	-236.54 ± 0.06	-236.77 ± 0.03
		6	-235.47 ± 0.19	-235.36 ± 0.08	-235.70 ± 0.13	-235.94 ± 0.05	-236.20 ± 0.25
		8	-235.41 ± 0.10	-235.19 ± 0.14	-235.40 ± 0.13	-235.62 ± 0.16	-235.70 ± 0.14
		10	-235.18 ± 0.11	-235.32 ± 0.05	-235.59 ± 0.01	-235.60 ± 0.09	-235.46 ± 0.19
$\begin{aligned} & \text { H } \\ & \text { OU } \\ & \text { On } \\ & 0 \end{aligned}$		4	-118.25 ± 0.08	-118.27 ± 0.05	-118.41 ± 0.07	-119.24 ± 0.17	-118.75 ± 0.08
		6	-117.62 ± 0.01	-117.62 ± 0.04	-117.75 ± 0.08	-118.47 ± 0.12	-117.90 ± 0.03
		8	-117.60 ± 0.05	-117.66 ± 0.12	-117.74 ± 0.10	-118.41 ± 0.10	-117.71 ± 0.02
		10	$\mathbf{- 1 1 7 . 0 3} \pm 0.09$	-116.99 ± 0.04	-117.21 ± 0.08	-117.70 ± 0.01	-117.13 ± 0.05
		4	-112.09 ± 0.27	-112.03 ± 0.12	-112.20 ± 0.26	-113.24 ± 0.16	-114.08 ± 0.35
		6	-111.50 ± 0.06	-111.39 ± 0.10	-111.26 ± 0.15	-112.30 ± 0.05	-113.71 ± 0.13
		8	-110.91 ± 0.04	-111.01 ± 0.06	$\mathbf{- 1 1 0 . 8 5} \pm 0.35$	-111.82 ± 0.09	-113.64 ± 0.10
		10	-110.66 ± 0.05	-110.79 ± 0.26	-110.79 ± 0.20	-111.33 ± 0.19	-114.00 ± 0.10

Conclusion and future work

- ARMS generalizes n iid samples (LOORF) and two antithetic samples (DisARM)
- Future work: extension to categorical variables, IWAE bound with antithetic samples, ...

References

Dong, Zhe, Andriy Mnih, and George Tucker. "DisARM: An Antithetic Gradient Estimator for Binary Latent Variables". In: Advances in Neural Information Processing Systems 33. 2020.
Kool, Wouter, Herke van Hoof, and Max Welling. "Buy 4 REINFORCE Samples, Get a Baseline for Free!" In: Workshop, Deep Reinforcement Learning Meets Structured Prediction, ICLR. 2019.
Mohamed, Shakir et al. "Monte Carlo Gradient Estimation in Machine Learning". In: J. Mach. Learn. Res. 21 (2020), 132:1-132:62.
Salimans, Tim and David A Knowles. "On using control variates with stochastic approximation for variational bayes and its connection to stochastic linear regression". In: arXiv preprint arXiv:1401.1022 (2014).
Williams, Ronald J. "Simple statistical gradient-following algorithms for connectionist reinforcement learning"' In: Machine learning 8.3-4 (1992), pp. 229-256.
Yin, Mingzhang et al. "Probabilistic Best Subset Selection by Gradient-Based Optimization". In: arXiv e-prints (2020).

Thank You!

Questions Welcome!

