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Monte Carlo objectives

Goal: expectation based objectives of the form Epφ(x)[f (x)]

Can be found in many areas:

Variational inference: Eqφ(z|x)[ln p(x , z)− ln qφ(z |x)]

Reinforcement learning: Eπφ(x)[
∑T

t=0 γ
tr(st , at)]

Finance (options pricing): Eps0 (sT )
[e−γT max{sT − K , 0}]

Operations research (discrete queuing): Epφ(y1:T )

[∑T
t=1 Lt(y1:t)
τ(y1:T )

]
Experimental design: Epφ(y)[1y<ybest ]

Et al. SDEs, GANs, bandits and online learning, econometrics,
instrumental variables, counterfactual reasoning, ...
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Discrete variational autoencoder

Maximize evidence lower bound (ELBO):

LELBO = Eqφ(z |x)[ln pθ(z , x)− ln qφ(z |x)] ≤ ln p(x)

Equivalent to minimizing KL divergence KL(q(z |x)||p(z |x)

q(z |x) is called an encoder, usually deep neural network x → φ

p(x |z) is a decoder, also neural network

p(z) is a prior distribution

In a discrete VAE q(z |x) =
∏D

d=1 Bern(zd |σ(φd)), with logits φ
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Monte Carlo gradients

Why Monte Carlo gradients?

Most expectations are too complicated to integrate

Why the score function (REINFORCE) gradient?

Most general, works with almost any distribution:

∇φEpφ(x)[f (x)] = Epφ(x)[f (x)∇φ ln pφ(x)]

Unbiased: E [gRF(x)] = E [f (x)∇φ ln pφ(x)] = ∇φ
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Estimators for binary variables

General REINFORCE: f (z)∇ ln pφ(z). What if z is binary?

Let b ∼ Bern(p), p = σ(φ).

REINFORCE: gRF = f (b)(b − p).

What if we have n independent samples?

LOORF (Leave One Out REINFORCE):

gLOORF =
1

n − 1

n∑
i=1

(
f (bi )−

1

n

n∑
j=1

f (bj)
)
(bi − p)
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Antithetic estimators for binary variables

What if we want to use antithetic (negatively correlated) pairs?

If u ∼ Unif(0, 1), then 1u<p ∼ Bern(p).

ARM: gARM =
(
f (1u<p)− f (1u>1−p)

) (
1
2 − u

)
.

Let b = 1u<p, b
′ = 1u>1−p.

DisARM/U2G noticed randomness can be integrated out:

gDisARM = 1
2

(
f (b)− f (b′)

)
(b − b′) max(p, 1− p)
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Copulas

n-dimensional or multivariate probability distribution with uniform
marginals.

u = (u1, ..., un) ∼ Cn, such that ∀i : ui ∼ Unif(0, 1).

How to create a copula?

Start with some multivariate distribution M.

Calculate all marginal CDFs: ∀i : Fxi (x).

Apply them to any sample: x = (x1, ..., xn) ∼M.

u = (u1, .., un), where ui = Fxi (xi ), is a copula sample.
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Approach

n independent samples (LOORF) perform better than n/2 antithetic
pairs (DisARM)

Is it possible to combine the two approaches?

Yes! If we can:

Sample n antithetic variables

Debias the estimator
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Similarities

LOORF for n = 2? b, b′ ∼ Bern(p)

g2-LOORF =
1

2

(
f (b)− f (b′)

)
(b − b′)

DisARM for b = 1u<p, b′ = 1(1−u)<p

gDisARM =
1

2

(
f (b)− f (b′)

)
(b − b′) max(p, 1− p)

Two extremes: no correlation ←→ minimal correlation (antithetic).

Can we generalize to an arbitrarily dependent Bernoulli pair? Yes!
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Antithetic Reinforce Two Sample (ARTS) Estimator

Let (b, b′) ∼ B2(p) denote a sample from a bivariate Bernoulli
distribution with correlation ρ = corr(b, b′).

An unbiased estimator is:

gARTS =
g2LOORF

1− ρ
=

1

2

(
f (b)− f (b′)

)
(b − b′)

1

1− ρ

If ρ = 0, we obtain two sample LOORF.

What is the lowest possible correlation for a Bernoulli pair b, b′?

ρ = −min( p
1−p ,

1−p
p ), which results in DisARM.
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How to go from two to n samples?

Key observation: LOORF is exactly the same as averaging all
(n
2

)
pairs!

gLOORF(b1, ..., bn) =
1

n

n∑
i=1

(
f (bi )−

1

n

n∑
j=1

f (bj)

)
∇φ ln p(bi )

=
1

n(n − 1)

∑
i 6=j

1

2

(
f (bi )− f (bj)

)(
∇φ ln p(bi )−∇φ ln p(bj)

)
=

1

n(n − 1)

∑
i 6=j

g2-LOORF(bi , bj),

Idea: what if the debiasing term is identical for all pairs?
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ARMS

Assume we have n Bernoulli variables, with ρ = corr(bi , bj), ∀i 6= j .

An unbiased gradient is:

gARMS =
gLOORF

1− ρ
=

1

n − 1

n∑
i=1

(
f (bi )−

1

n

n∑
j=1

f (bj)

)
bi − p

1− ρ

Last hurdle: how to sample n antithetic Bernoulli?

If we have n antithetic uniform variables.

Then bi = 1ui<p are antithetic Bernoulli.

How to obtain n antithetic uniform variables? Copulas!

(Sidenote: must also be able to calculate rho)
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Antithetic Gaussian copula

Gaussian copula: numerical marginal and bivariate CDFs.

Sample (x1, ..., xn) ∼ N (0,Σ), with Σii = 1, Σij = −1/(n − 1).

Let ui = Φ(xi ), where Φ(x) is the standard Gaussian CDF.

(u1, ..., un) is a copula with pairwise correlation close to to ρmin.

The correlation between to Bernoulli variables is: ρ =
E[bibj ]−p2
p(1−p)

E [bibj ] = P(bi = bj = 1) = P(ui < p, uj < p) = Φ(p, p).
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Antithetic Dirichlet copula

When α = 1, we have both a analytical marginal and bivariate CDF.

Sample (d1, ..., dn) ∼ Dir(1, ..., 1).

Can alternatively do the following:

1. vi ∼ Unif(0, 1), i = 1 . . . n

2. di = ln(vi )/
∑n

j=1 ln(vj)

ui = 1− (1− di )
n−1

ρ = max(0,2(1−p)
1

n−1−1)n−1−(1−p)2
p(1−p)
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How good are the correlations?
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Putting it all together

1 Sample n antithetic uniform variables (either Dirichlet or Gaussian)

2 Transform to Bernoulli bi = 1ui<p and calculate ρ

3 Obtain an unbiased estimator ARMS:

gARMS =
1

n − 1

n∑
i=1

(
f (bi )−

1

n

n∑
j=1

f (bj)

)
bi − p

1− ρ
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Toy example

Maximize: E(φ) = Eb[(b − 0.499)2], b ∼ Bern(σ(φ))

Below: variance (all already unbiased) of each gradient as the
function is maximized from pinit = 0.05 to pend = 0.95.
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Training ELBO
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Conclusion and future work

ARMS generalizes n iid samples (LOORF) and two antithetic samples
(DisARM)

Future work: extension to categorical variables, IWAE bound with
antithetic samples, ...
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Thank You!
Questions Welcome!
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