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Sensitive applications of ML require Transparency and Explainability

» Machine learning applied to high stakes decisions:

® Recurrence predictions in medicine

® Credit default risk evaluations

® Even in contexts where it should not be applied in
current form (e.g., bail decisions in criminal
justice...)

» Critical decisions = Right to have explanations and
recourse, i.e., “what can I do to change the outcome”.

» Counterfactual explanations: contrastive arguments
of the type: “To obtain this loan, you need $40,000 of
annual revenue instead of the current $30,000”.

® Ideally, good counterfactual explanations provide
the “smallest” set of changes of the features (or
actions) needed to achieve the desired class,

® Bound by additional constraints imposing
plausibility and actionability.
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Explanations in Tree Ensembles

Counterfactual Search

Given an origin point X and a desired
prediction class ¢, searching for a plausi-
ble and actionable counterfactual explana-
tion consists in locating a new data point
x € X that solves the following problem:

min  fx(x)
st. Fr(x)=c"
xeX Nnx*

» Finding counterfactual explanations in tree
ensembles is notably difficult:

® Function Fr(x) has a number of pieces that
grows as the product of the number of leaves
of the trees [7].

® Changing any feature impacts the
trajectory in all trees = searching for the
right combination of leaves

® Non-convex, non differentiable decision
function, NP-hard optimization problem.
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HEURISTIC vs OPTIMAL Explanations
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» OPTIMAL counterfactual search through
mixed-integer linear programming (MILP)
provides explanations grounded on a
mathematical definition, independently of the

® Largely overshooting the actions (up to search algorithm
31.7x in our experiments) needed to
achieve the desired outcome.

® Unstable solution quality, widely varying
between different subjects and subject
groups...

® s this transparent and fair?

» Current HEURISTIC explanation
algorithms, e.g., Feature Tweaking (FT — [5])
regularly produce suboptimal solutions

® The flexibility of the modeling framework
permit to seamlessly include a wide
diversity of metrics, objectives and
constraints

® As seen in this study, is possible to
achieve optimal results within seconds

References 4/15



OCEAN — Optimal Counterfactual Explanations

» MILP = solution of a problem represented as a set of linear equations, in which some
variables are restricted to the integer domain, under an objective measuring how difficult it
is to act on the different features.

» Solved to optimality with a branch-and-cut solver (Gurobi)

» Our model has several desirable characteristics that permit an efficient solution:

® Jogarithmic number of integer variables (not linear as in [1, 2]);
® tighter linear relaxation than previous models = improves branch-and-cut performance

» The approach is very flexible:

® applicable to heterogeneous data with numerical, ordinal, categorical and binary features;
® large variety of objectives: lo, {1 and l2 norm and extensions thereof;
® additional actionability and plausibility constraints.
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Sample Flows Numerical Features

The X\ variables represent the branch decisions for each The p variables represent the levels of numerical fea-
tree t at each layer d. The y variables represent the tures as ordered simplices, also connecting them with
flows of the counterfactual example through each tree. the variables representing the branch choices.
yu =1 teT i ;
A je{l,....k
Yo = Yei(v) + Yer(v) teT,veV/ H'_ = jedl ’k;}
7 <1 — Yo je{l,....khteT,veV,,
Z Yti(v) S Atd teT,deD /‘in—1 Yi) ] { ’ tI]
vevl, B2 Yer(w) je{l,... kihteT,veVy
Yo € [0,1] teT,veViuy! 1] > €Ytr(v) je{l,.. kil teT,ve V)
Aea € {0,1} teT,de D pl €[0,1] J €40, ki}
Yy =1
z1= 0.0 0.4 0.6 1.0
Ao —= - I R i o 1 2
M1 H1 M1
Yt2 / \ Yt3
Nep o~ 21 <04 |------- 21 <0.6 | -- 2= 0.0 0.5 1.0
0 1
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OCEAN — Optimal Counterfactual Explanations

Categorical Features

The v variables represent the possible categories:

J

vl <1 = yu jeEC,teT,we Vi
Vi > ) jeC,teT,veV,
vl €{0,1} jed;s
Z I/g =1

JEC;

Binary Features

Ordinal Features

The w variables represent the relevant levels for the
ordinal features (only those appearing in some splitting
hyperplanes):

W <1l—yuw J€{1,... ki—1},t€T,v eV,
Wl je{l,....ki—1},te T,v eV
w

7> Yerw)
je{l,.. k—1}

€40, 1}

Simply done through binary x variables:

2 < 1— Yy teT,veVh
Ti 2 Yir(v) teT,ve Vi
T € {07 1}

The domain of the variables repre-
senting the features can be relaxed
to the continuous interval [0, 1] while
retaining integrality of the linear-
relaxation solutions (with the sim-
plex algorithm).
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OCEAN — Optimal Counterfactual Explanations

For binary, categorical, or ordinal features, we can freely set a weight for each discrete choice in the
objective. For continuous numerical features, we can proceed as follows:

Objective for numerical features

lo:

lli

o) => (erz +cfzh)

i€ly
1 e > e In =
27 €{0,1}, 2 € {0,1} i€lx

ki
() =Y (eI = o)
j=0

with parameter ¢! = ¢; max(&; — z7,0)

+ ¢f max(z] — &;,0)

Achieving the desired counterfactual class
¢ though majority vote can be expressed

as:
Ze = § E WtPtvcYtov c e C
teTUEVtL
Zev > 2c ceC,c#c"
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OCEAN — Optimal Counterfactual Explanations

Many additional constraints related to actionability and plausibility can be seamlessly integrated into

the model:

Domain Knowledge

Constraints

Fixed features
Monotonic features

Ti = Zi, i = fli, Vi =D
T > Xiy i > iy Vi 2 04

Known linear relations between features

A . . . A(z; —2:)<b
(i.e., joint actionability — Venkatasubramanian and Alfano 6) (@i — &) <
Known logical implications between features,

Example for binary features (z; = TRUE) = (z2 = TRUE) T > T

Example for categorical features z1 € {CAT1, CAT2} = 22 € {CAT3, CAT4}

3 4 1 2
vy +vy > v 7

Resource constraints (e.g., time) as modeled by additional functions g;(x, v, u)

gi(x, v, p) < b;
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Experimental Setup

» We used heterogeneous datasets coming from a wide range of applications, with up to 45222

samples and 57 features.

® Divided each data set into 80% training and 20% test
® For each data set, trained a random forest (RF) with 100 trees and maximum depth of 5, and

selected 20 origin samples with negative outcome for the counterfactual explanations

® Saved/Serialized all the RF and samples for a fair comparison between different counterfactual
explanation methods

Data set n P Px Ps Pe Src.
AD: Adult 45222 11 5 2 4 UCI
CC: Credit Card Default 29623 14 11 3 0 UCI
CP: COMPAS 5278 5 2 3 0 ProPublica
GC: German Credit 1000 9 5 1 3 UCI
ON: Online News 39644 47 43 2 2 UCI
PH: Data Phishing 11055 30 8 22 0 UCI
SP: Spambase 4601 57 57 0 0 UCI
ST: Students Performance 395 30 13 13 4 UCI
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Computational Experiments — Performance and Optimality

Comparing CPU time and solution quality with
other approaches for RF explanations: FT [5],

MACE [3], OAE [1, 2]. We use the [; objective
(which is common to all methods) and the same

Measuring the time needed to find optimal
counterfactual explanations with OCEAN for
different objectives and data sets

CPU Time (s) serialized RFs.
S{ 0w oLl oL H
= Vo Data FT MACE OAE OCEAN
o o . T(s) R T(s) R T(s) R T(s) R
o ‘o LT AD 303 159 2060 1.1 2837 1.0 122 1.0
A T - CC 2944 102 4125 1.2 552 1.0 134 1.0
. . . T H ; CP 2268 45 1582 1.0 038 1.0 052 1.0
10 va - QH 1ok T. GC 1626 4.8 19.03 1.0 508 1.0 116 1.0
-8 EE I e E ON 1005 31.7  >900 —  >900 — 297 1.0
w | DHg v o BEH b H PH 1095 14  >900 — 094 10 052 10
c s E S D SP NA — >900 —  >900 — 273 1.0
N et ST NA  — >900 —  69.64 1.0 1.10 1.0
o H
° TL+ R = Ratio between [; distance found & optimum
T

T T T T T NA = No counterfactual explanation found
AD cc cP GC ON PH SP ST > 900 = Time limit exceeded
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Computational Experiments — Scalability

Comparative analysis of CPU time as a function

of the maximum depth of the trees. Number of

trees fixed to 100:

FT —e— MACE —«— OAE

T (s)

1.0

T(s)

100

10

1.0

Max Depth

Max Depth

Comparative analysis of CPU time as a function
of the number of trees in the ensemble. Maximum
depth fixed to 5:

FT —e— MACE —«— OAE OCEAN —e—

() T LB—— T Y m— T
100 - 8 100 | B
10 B 10 4
1.0 | 1 1.0 | 1
0.1 AD T 0.1 | cc
. L . . L . .
10 20 50 100 200 500 10 20 50 100 200 500

Nb Trees Nb Trees
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Computational Experiments — Isolation Forests for Plausibility

> Isolation forests [4] are trained to return an outlier score for any sample, inversely proportional to
its average path depth within a set of randomized trees.

® Constraining this average depth to be greater than a threshold § controls the plausibility of

the counterfactual explanation.

This is done within the same MILP formulation, with an additional set of constraints
representing the IF. We select § to capture 10% of the training data as an outlier =
counterfactual explanation typical of the 90% most common samples for the target class.

® Computational time remains tractable even with the addition of the IF
CPU Time (s)
= Point of interest OwoLw oL
¥ Counterfactual without isolation forest

A Counterfactual with isolation forest S

LB
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Conclusions & Perspectives

» Optimal counterfactual explanations are achievable for most tabular datasets of practical interest

» The flexibility of an appaoch based on MILP gives much-needed flexibility to integrate additional
objectives, penalty terms, and constraints related to actionability and plausibility

» Models are still evolving, and likely to need customization for each application at hand

» Further developments could focus on improving performance, but without losing sight of
formulation ease and extendability
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Thanks !

Contact: thibaut.vidal@polymtl.ca
Data & Open-source code: https://github.com/vidalt/0CEAN

Regular updates: https://twitter.com/vidalthi
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