
Optimal Counterfactual Explanations
in Tree Ensembles

Axel Parmentier1, Thibaut Vidal2,3

1 Cermics, École des Ponts Paristech
2 CIRRELT & SCALE-AI Chair in Data-Driven Supply Chains, MAGI, Polytechnique Montreal, Canada
3 Department of Computer Science, Pontifical Catholic University of Rio de Janeiro (PUC-Rio), Brazil

Image Credit: Hitchhikers Guide
to the Galaxy



Sensitive applications of ML require Transparency and Explainability

I Machine learning applied to high stakes decisions:

• Recurrence predictions in medicine
• Credit default risk evaluations
• Even in contexts where it should not be applied in

current form (e.g., bail decisions in criminal
justice...)

I Critical decisions ⇒ Right to have explanations and
recourse, i.e., “what can I do to change the outcome”.

I Counterfactual explanations: contrastive arguments
of the type: “To obtain this loan, you need $40,000 of
annual revenue instead of the current $30,000”.

• Ideally, good counterfactual explanations provide
the “smallest” set of changes of the features (or
actions) needed to achieve the desired class,

• Bound by additional constraints imposing
plausibility and actionability.
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Explanations in Tree Ensembles

Counterfactual Search

Given an origin point x̂ and a desired
prediction class c∗, searching for a plausi-
ble and actionable counterfactual explana-
tion consists in locating a new data point
x ∈ X that solves the following problem:

min fx̂(x)

s.t. FT (x) = c∗

x ∈ Xp ∩Xa

I Finding counterfactual explanations in tree
ensembles is notably difficult:

• Function FT (x) has a number of pieces that
grows as the product of the number of leaves
of the trees [7].

• Changing any feature impacts the
trajectory in all trees ⇒ searching for the
right combination of leaves

• Non-convex, non differentiable decision
function, NP-hard optimization problem.
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HEURISTIC vs OPTIMAL Explanations

I Current HEURISTIC explanation
algorithms, e.g., Feature Tweaking (FT – [5])
regularly produce suboptimal solutions

• Largely overshooting the actions (up to
31.7× in our experiments) needed to
achieve the desired outcome.

• Unstable solution quality, widely varying
between different subjects and subject
groups...

• Is this transparent and fair?

I OPTIMAL counterfactual search through
mixed-integer linear programming (MILP)
provides explanations grounded on a
mathematical definition, independently of the
search algorithm

• The flexibility of the modeling framework
permit to seamlessly include a wide
diversity of metrics, objectives and
constraints

• As seen in this study, is possible to
achieve optimal results within seconds
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OCEAN – Optimal Counterfactual Explanations

I MILP = solution of a problem represented as a set of linear equations, in which some
variables are restricted to the integer domain, under an objective measuring how difficult it
is to act on the different features.

I Solved to optimality with a branch-and-cut solver (Gurobi)

I Our model has several desirable characteristics that permit an efficient solution:
• logarithmic number of integer variables (not linear as in [1, 2]);
• tighter linear relaxation than previous models ⇒ improves branch-and-cut performance

I The approach is very flexible:
• applicable to heterogeneous data with numerical, ordinal, categorical and binary features;
• large variety of objectives: l0, l1 and l2 norm and extensions thereof;
• additional actionability and plausibility constraints.
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Sample Flows

The λ variables represent the branch decisions for each
tree t at each layer d. The y variables represent the
flows of the counterfactual example through each tree.

yt1 = 1 t ∈ T
ytv = ytl(v) + ytr(v) t ∈ T , v ∈ VI

t∑
v∈VI

td

ytl(v) ≤ λtd t ∈ T , d ∈ Dt

ytv ∈ [0, 1] t ∈ T , v ∈ VI
t ∪ VI

t

λtd ∈ {0, 1} t ∈ T , d ∈ Dt.

Numerical Features

The µ variables represent the levels of numerical fea-
tures as ordered simplices, also connecting them with
the variables representing the branch choices.

µj−1
i ≥ µj

i j ∈ {1, . . . , ki}

µj
i ≤ 1− ytl(v) j ∈ {1, . . . , ki}, t ∈ T , v ∈ VI

tij

µj−1
i ≥ ytr(v) j ∈ {1, . . . , ki}, t ∈ T , v ∈ VI

tij

µj
i ≥ εytr(v) j ∈ {1, . . . , ki}, t ∈ T , v ∈ VI

tij

µj
i ∈ [0, 1] j ∈ {0, . . . , ki}

λt0

λt1
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OCEAN – Optimal Counterfactual Explanations

Categorical Features

The ν variables represent the possible categories:

νji ≤ 1− ytl(v) j ∈ Ci, t ∈ T , v ∈ VI
tij

νji ≥ ytr(v) j ∈ Ci, t ∈ T , v ∈ VI
tij

νji ∈ {0, 1} j ∈ Ci∑
j∈Ci

νji = 1

Ordinal Features

The ω variables represent the relevant levels for the
ordinal features (only those appearing in some splitting
hyperplanes):

ωj−1
i ≥ ωj

i j ∈ {2, . . . , ki − 1}

ωj
i ≤ 1− ytl(v) j ∈ {1, . . . , ki−1}, t ∈ T , v ∈ VI

tij

ωj
i ≥ ytr(v) j ∈ {1, . . . , ki−1}, t ∈ T , v ∈ VI

tij

ωj
i ∈ {0, 1} j ∈ {1, . . . , ki − 1}

Binary Features

Simply done through binary x variables:

xi ≤ 1− ytl(v) t ∈ T , v ∈ VI
ti

xi ≥ ytr(v) t ∈ T , v ∈ VI
ti

xi ∈ {0, 1}

The domain of the variables repre-
senting the features can be relaxed
to the continuous interval [0, 1] while
retaining integrality of the linear-
relaxation solutions (with the sim-
plex algorithm).
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OCEAN – Optimal Counterfactual Explanations

For binary, categorical, or ordinal features, we can freely set a weight for each discrete choice in the
objective. For continuous numerical features, we can proceed as follows:

Objective for numerical features

l0 :


fn
0 (µ) =

∑
i∈IN

(c−i z
−
i + c+i z

+
i )

z−i ≥ 1− µj−1
i , z+i ≥ µ

j
i i ∈ IN, j = ĵi

z−i ∈ {0, 1}, z
+
i ∈ {0, 1} i ∈ IN

l1 :


fn
1 (µ) =

ki∑
j=0

(φj+1
i − φj

i )µ
j
i

with parameter φj
i = c−i max(x̂i − xji , 0)

+ c+i max(xji − x̂i, 0)

Achieving the desired counterfactual class
c∗ though majority vote can be expressed
as:

zc =
∑
t∈T

∑
v∈VL

t

wtptvcytv c ∈ C

zc∗ > zc c ∈ C, c 6= c∗
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OCEAN – Optimal Counterfactual Explanations

Many additional constraints related to actionability and plausibility can be seamlessly integrated into
the model:

Domain Knowledge Constraints

Fixed features xi = x̂i, µi = µ̂i, νi = ν̂i
Monotonic features xi ≥ x̂i, µi ≥ µ̂i, νi ≥ ν̂i
Known linear relations between features

A(xi − x̂i) ≤ b
(i.e., joint actionability – Venkatasubramanian and Alfano 6)

Known logical implications between features,
Example for binary features (x1 = True)⇒ (x2 = True) x2 ≥ x1
Example for categorical features x1 ∈ {Cat1,Cat2} ⇒ x2 ∈ {Cat3,Cat4} ν32 + ν42 ≥ ν11 + ν21

Resource constraints (e.g., time) as modeled by additional functions gi(x,ν,µ) gi(x,ν,µ) ≤ bi
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Experimental Setup

I We used heterogeneous datasets coming from a wide range of applications, with up to 45222
samples and 57 features.

• Divided each data set into 80% training and 20% test
• For each data set, trained a random forest (RF) with 100 trees and maximum depth of 5, and

selected 20 origin samples with negative outcome for the counterfactual explanations
• Saved/Serialized all the RF and samples for a fair comparison between different counterfactual

explanation methods

Data set n p pn pb pc Src.

AD: Adult 45222 11 5 2 4 UCI
CC: Credit Card Default 29623 14 11 3 0 UCI
CP: COMPAS 5278 5 2 3 0 ProPublica
GC: German Credit 1000 9 5 1 3 UCI
ON: Online News 39644 47 43 2 2 UCI
PH: Data Phishing 11055 30 8 22 0 UCI
SP: Spambase 4601 57 57 0 0 UCI
ST: Students Performance 395 30 13 13 4 UCI
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Computational Experiments – Performance and Optimality

Measuring the time needed to find optimal
counterfactual explanations with OCEAN for
different objectives and data sets
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Comparing CPU time and solution quality with
other approaches for RF explanations: FT [5],
MACE [3], OAE [1, 2]. We use the l1 objective
(which is common to all methods) and the same
serialized RFs.

Data FT MACE OAE OCEAN
T(s) R T(s) R T(s) R T(s) R

AD 3.03 15.9 20.60 1.1 28.37 1.0 1.22 1.0
CC 29.44 10.2 41.25 1.2 5.52 1.0 1.34 1.0
CP 22.68 4.5 15.82 1.0 0.38 1.0 0.52 1.0
GC 16.26 4.8 19.03 1.0 5.08 1.0 1.16 1.0
ON 10.05 31.7 >900 — >900 — 2.97 1.0
PH 10.95 1.4 >900 — 0.94 1.0 0.52 1.0
SP NA — >900 — >900 — 2.73 1.0
ST NA — >900 — 69.64 1.0 1.10 1.0

R = Ratio between l1 distance found & optimum
NA = No counterfactual explanation found
> 900 = Time limit exceeded
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Computational Experiments – Scalability

Comparative analysis of CPU time as a function
of the maximum depth of the trees. Number of
trees fixed to 100:
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Comparative analysis of CPU time as a function
of the number of trees in the ensemble. Maximum
depth fixed to 5:
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Computational Experiments – Isolation Forests for Plausibility

I Isolation forests [4] are trained to return an outlier score for any sample, inversely proportional to
its average path depth within a set of randomized trees.

• Constraining this average depth to be greater than a threshold δ controls the plausibility of
the counterfactual explanation.

• This is done within the same MILP formulation, with an additional set of constraints
representing the IF. We select δ to capture 10% of the training data as an outlier ⇒
counterfactual explanation typical of the 90% most common samples for the target class.

• Computational time remains tractable even with the addition of the IF
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Conclusions & Perspectives

I Optimal counterfactual explanations are achievable for most tabular datasets of practical interest

I The flexibility of an appaoch based on MILP gives much-needed flexibility to integrate additional
objectives, penalty terms, and constraints related to actionability and plausibility

I Models are still evolving, and likely to need customization for each application at hand

I Further developments could focus on improving performance, but without losing sight of
formulation ease and extendability
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Thanks !

Contact: thibaut.vidal@polymtl.ca

Data & Open-source code: https://github.com/vidalt/OCEAN

Regular updates: https://twitter.com/vidalthi
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