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Gaussian Processes

• Gaussian processes (GPs) are a popular non-parametric method that 
model priors over functions.


• GPs are very flexible, and provide well-calibrated uncertainties.
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The Big Picture

• Modern scalable Gaussian processes rely 
on fast matrix-vector multiplies (MVMs).


• Structured Kernel Interpolation (SKI) uses 
sparse interpolation of inducing points on a 
rectangular grid, costing .


• We propose Simplex-GPs, that leverage 
equivalence between GP inference and 
bilateral filtering to instead use sparse 
interpolation on a simplicial grid, 
exponentially accelerating MVMs to .

𝒪(n4d)

𝒪(nd2)
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Gaussian Processes for Regression

• For a typical regression problem with  inputs  and outputs , we model 
a Gaussian process prior, with a Gaussian observation likelihood as,


                    


• The mean function  is taken to be a constant function (often zero), and 
the kernel function  is defined by parameters .


• The objective of GP inference now is to find the posterior over functions -
.

n X y

f( ⋅ ) ∼ GP(μ( ⋅ ), k( ⋅ , ⋅ )) ,
y ∣ X ∼ 𝒩( f(X), σ2I) .

μ
k θ

p( f ∣ X, y, θ, σ2)
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Gaussian Process Inference

• Using Gaussian conditioning identities, for  novel inputs , the 
posterior is fully specified by mean and covariance,





• All we need now is model selection, i.e. selecting values of kernel 
parameters  and likelihood noise .

n⋆ X⋆

𝔼[ f(X⋆)] =
n⋆ × 1⏞μX⋆

+ KX⋆,X[KX,X + σ2I]−1
n × 1⏞y ,

cov(X⋆) = KX⋆,X⋆

n⋆ × n⋆

− KX⋆,X[ KX,X
⏟
n × n

+ σ2I]−1K⊤
X⋆,X

⏟
n × n⋆

.

θ σ2
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Gaussian Process Model Selection

• This is achieved by maximizing the marginal -likelihood (MLL) of data:





• Exact inverse and determinant computations are , making the 
optimization prohibitively expensive even for moderately-sized datasets.


• Modern scalable GP methods instead rely on iterative methods like 
conjugate gradients (CG), often using  MVMs involving only the 
data covariance matrix as .


• Our work on accelerating MVMs, is therefore crucial for fast inference.

log

log p(y ∣ X) ∝ − 1
2 y⊤ (KX,X+σ2I)−1 y− 1

2 log|KX,X+σ2I | .

𝒪(n3)

p ≪ n
v ↦ KX,Xv
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Inducing Point Methods

• Inducing point methods aim to reduce the computational burden by 
introducing a set of  pseudo-points . We then have,


                    


• The computation now reduces to .


• Structured Kernel Interpolation (SKI) argues that the cross-covariance 
matrix  incurs a significant cost for large-scale data.

m ≪ n U

KX,X ≈ KX,U
⏟
n × m

K−1
U,U

⏟
m × m

K⊤
X,U

⏟
m × n

.

𝒪(m2n + m3)

KX,U
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Structured Kernel Interpolation

• Structured Kernel Interpolation (SKI) provides a general framework for 
approximating covariance matrices, even allowing .


• A sparse interpolation  is posited such that,


                      


• By exploiting geometric structures on  like Kronecker factorization, the 
computational time is reduced to , but still suffers from the 
curse of dimensionality.

m ≫ n

KX,U ≈ WXKU,U

KX,X ≈ WXKU,UW⊤
X .

U
𝒪(n4d + g(m))

8

Wilson and Nickisch. Kernel Interpolation for Scalable Structured Gaussian Processes. In ICML 2015



Bilateral Filtering

• High-dimensional Gaussian filtering can be 
described in general as a local interpolation, 

.


• In a color bilateral filter, location  represents 
the 2-D pixel locations and RGB color; 
values  represents the RGB color.


• Notably, the filtering operation is an MVM; a 
brute force computation would require 

 time.

y′￼i =
n

∑
j=1

e−∥xi−xj∥2yj

x

y

𝒪(n2d)
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A bilateral filter is a non-linear version of the 
Gaussian filter that preserves sharp edges.



The Permutohedral Lattice

• Bilateral filtering can be accelerated.


• Instead of a rectangular grid, we tile the 
space with a simplicial grid.


• The number of neighbors are now linear, 
instead of exponential, in the 
dimension.


• Each input can be encoded as a 
barycentric interpolation of its enclosing 
simplex; filtering can be done in  
time.

𝒪(nd2)

10

Adams, et. al. Fast High-dimensional Filtering using the Permutohedral Lattice. Computer Graphics Forum, 2010



Bilateral Filtering & MVM-Based GP Inference

• Under the SKI framework, MVM-based GP inference with the RBF kernel 
is exactly equivalent to bilateral filtering.


• Bilateral filtering is accelerated by embedding the locations onto a sparse 
permutohedral lattice.


• Simplex-GPs exploit this connection to help accelerate SKI inference, 
slashing the complexity to , and alleviating the curse of 
dimensionality.

𝒪(nd2)
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Simplex Gaussian Processes

• For a vector , the key MVM approximation we care about, as developed 
by SKI, is


             


• Executing this MVM using the permutohedral lattice is a three-stage 
operation — splat, blur, and slice.


• Consequently, a fast MVM directly impacts GP inference with conjugate 
gradients, which rely exclusively on MVMs.

v

KX,Xv ≈ WX⏟
Slice

KU,U
⏟

Blur

W⊤
X⏟

Splat

v .
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Simplex GPs — Splat
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• Consider a set of -dimensional locations , 
with corresponding values .


• Splat projects locations  on to the lattice by 
finding each enclosing simplex in , 
storing sparsely. 


• Each lattice vertex stores the barycentric 
weights for interpolation of both locations and 
corresponding values, using  implicitly.


• Each of the  generated vertices now acts as 
an inducing point .

d X
v

X
𝒪(d2)

WX

m
U



Simplex GPs — Blur
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• We can now apply convolutions using 
discretized filters on each vertex, e.g.  
binomial stencil for Gaussian blur.


• In a simplicial grid, all neighbors can be 
looked up in .


• The weights for filtering, i.e. the blur stencil, 
implicitly correspond to the entries of the 
matrix .


• We also provide a general scheme to 
discretize any stationary kernel.

[1,2,1]

𝒪(d2)

KU,U



Simplex GPs — Slice
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• Slice is the reversal of the splat operation.


• We project the locations back into original 
space, using the same barycentric weights 
for each lattice vertex computed during 
splat.


• The entire filtering, or the implied MVM, 
completes in .


• We also show that derivatives can be 
approximated as a filtering operation too!

𝒪((n + m)d2)



Small MVM Approximation Error

• We compute the cosine error incurred for an MVM w.r.t. exact 
computation with a KeOps RBF kernel for benchmark datasets.
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Fast Matrix-Vector Multiplies

• For large-scale datasets, Simplex-GPs can be up to 10 times faster as 
compared to a single MVM computation with KeOps.
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Economical Memory Usage

• Simplex-GPs significantly reduce the peak memory footprint, by up to 10 
times against competing approximate methods, and even more in 
comparison to exact GPs.
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Test RMSE Performance

Dataset / Method Exact GP (KeOps) Simplex-GP SGPR

Houseelectric 0.054 0.079 0.067

Precipitation 0.937 0.939 1.033

Keggdirected 0.083 0.095 0.380

Protein 0.511 0.571 0.579

Elevators 0.399 0.510 0.356

Minimal Performance Loss
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Faster Training

• Simplex-GPs can train faster at little loss in test performance, even when 
compared to highly scalable exact GP implementation using KeOps.

20



Practical Considerations

• Stability of iterative solvers for GP inference can be sensitive to the error 
tolerance in conjugate gradients (CG).


• This consideration is not limited to Simplex-GPs, but applies to CG based 
methods in general.
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Improving Training Stability

• Training can stabilized by using:


• early stopping while monitoring 
performance on a held-out validation 
dataset.


• a lower CG error tolerance, typically of 
the order of , but can significantly 
slowdown inference.


• randomized truncations for bias-free CG, 
which can alleviate slowdown.

10−4
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When to use Simplex-GPs?

• Simplex-GPs can better exploit scenarios where we have,


• large-scale datasets with more than  training points.


• datasets that generate a sparse lattice, owing to


• moderate data variance, or


• moderately large kernel lengthscales.

100k

23



Getting Started with Lattice Kernels

pip install gpytorch-lattice-kernel
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A One Line Replacement in GPyTorch

• The lattice kernels can be simply dropped into existing GPyTorch models!
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Challenges & Outlook

• Simplex-GPs provide a favorable trade-off between computation and 
performance for large-scale datasets.


• The runtime constants, however, are large such that the asymptotic gains 
are only realized for large datasets.


• We hope this cross-pollination of ideas stimulates both communities:


• scalable GP inference for even higher-dimensional data,


• and fast high-dimensional image filtering using scalable GP inference. 
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Resources

      perhapsbay.es/simplex-gp


      perhapsbay.es/simplex-gp-code
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