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Gaussian Processes

 (Gaussian processes (GPs) are a popular non-parametric method that
model priors over functions.

 GPs are very flexible, and provide well-calibrated uncertainties.
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The Big Picture

 Modern scalable Gaussian processes rely
on fast matrix-vector multiplies (MVMSs).

o Structured Kernel Interpolation (SKI) uses
sparse interpolation of inducing points on a

rectangular grid, costing O(n4%).

* \We propose Simplex-GPs, that leverage
equivalence between GP inference and
bilateral filtering to instead use sparse
iInterpolation on a simplicial grid,

exponentially accelerating MVMs to O(nd?).
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Gaussian Processes for Regression

 For a typical regression problem with 7 inputs X and outputs y, we model
a Gaussian process prior, with a Gaussian observation likelihood as,

JC) ~ GPu(C- ), k(- -)) ,
y | X ~ V(fX),0]) .

 The mean function u is taken to be a constant function (often zero), and
the kernel function k is defined by parameters 0.

* The objective of GP inference now is to find the posterior over functions -

p(f1X,y,0,c?).



(Gaussian Process Inference

» Using Gaussian conditioning identities, for n, novel inputs X , the
posterior is fully specified by mean and covariance,

n, X1 nxl1

(X)) = fix. +Kx xlKxx+o07 Y,

cov(X,) = Ky, x, — Kx x[ Kxx +0T 'Ky x -

n, Xn, nxn nXxXn,

* All we need now is model selection, i.e. selecting values of kernel

parameters 0 and likelihood noise o~



(Gaussian Process Model Selection

» This is achieved by maximizing the marginal log-likelihood (MLL) of data:

1

logp(y | X) o ==y (Ky y+071) " y—- log|Ky +07I] .

 Exact inverse and determinant computations are @(n3), making the
optimization prohibitively expensive even for moderately-sized datasets.

 Modern scalable GP methods instead rely on iterative methods like
conjugate gradients (CQ), often using p < n MVMs involving only the
as vV — KX,XV

 Our work on accelerating MVMs, is therefore crucial for fast inference.
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Inducing Point Methods

* Inducing point methods aim to reduce the computational burden by
introducing a set of m < n pseudo-points U. We then have,

~ —1 T
KX,X N/ KX,U KU,U KX,U .

nXxXm mXm mXn
 The computation now reduces to @(mzn + m3).

o Structured Kernel Interpolation (SKI) argues that the cross-covariance
matrix KX,U incurs a significant cost for large-scale data.



Structured Kernel Interpolation

o Structured Kernel Interpolation (SKI) provides a general framework for
approximating covariance matrices, even allowing m > n.

- A sparse interpolation Ky y & WxKy y is posited such that,
~ T
KX,X N/ WXKU,UWX .

» By exploiting geometric structures on U like Kronecker factorization, the

computational time is reduced to O(n4? + 2(m)), but still suffers from the
curse of dimensionality.

Wilson and Nickisch. Kernel Interpolation for Scalable Structured Gaussian Processes. In ICML 2015
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Bilateral Filtering

* High-dimensional Gaussian filtering can be
described in general as a local interpolation,
n

- —HXi_X'H2
Yi = Z € Y
j=1

* In a color bilateral filter, location X represents
the 2-D pixel locations and RGB color;

values y represents the RGB color A bilateral filter is a non-linear version of the

Gaussian filter that preserves sharp edges.

* Notably, the filtering operation is an MVM; a
brute force computation would require

O(n’d) time.



The Permutohedral Lattice

» Bilateral filtering can be accelerated. Rectangular grid Simplicial grid
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 The number of neighbors are now linear, . )
instead of exponential, in the ¢ ¢ T
dimension. S S

e Fach input can be encoded as a o Grid point u € R¢ e Data point x € R

pbarycentric interpolation of its enclosing

simplex; filtering can be done in O(nd?)
time.

Adams, et. al. Fast High-dimensional Filtering using the Permutohedral Lattice. Computer Graphics Forum, 2010
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Bilateral Filtering & MVM-Based GP Inference

 Under the SKI framework, MVM-based GP inference with the RBF kernel
IS exactly equivalent to bilateral filtering.

» Bilateral filtering is accelerated by embedding the locations onto a sparse
permutohedral lattice.

 Simplex-GPs exploit this connection to help accelerate SKI inference,

slashing the complexity to O(nd?), and alleviating the curse of
dimensionality.
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Simplex Gaussian Processes

 For a vector v, the key MVM approximation we care about, as developed
by SKI, is

~ T
KX,XV Y/ WX KU,U \ijv .

Slice.  Blur Splat

* EXxecuting this MVM using the permutohedral lattice is a three-stage
operation — splat, blur, and slice.

 Consequently, a fast MVM directly impacts GP inference with conjugate
gradients, which rely exclusively on MVMs.
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Simplex GPs — Splat

e Consider a set of d-dimensional locations X,
with corresponding values v.

» Splat projects locations X on to the lattice by
finding each enclosing simplex in O(d?),
storing sparsely.

* Each lattice vertex stores the barycentric
weights for interpolation of both locations and

corresponding values, using Wy implicitly.

 Each of the m generated vertices now acts as
an inducing point U.
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Simplex GPs — Blur

 We can now apply convolutions using

on each vertex, e.g. [1,2,1]
binomial stencil for Gaussian blur.

* In a simplicial grid, all neighbors can be
looked up in O(d?).

 The weights for filtering, I.e. the blur stencill,
implicitly correspond to the entries of the

matrix Ky .

» We also provide a general scheme to Multiply by Ku.u
discretize any stationary kernel. (Blur)
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Simplex GPs — Slice

o Slice is the reversal of the splat operation.

* \We project the locations back into original
space, using the same barycentric weights
for each lattice vertex computed during
splat.

* The entire filtering, or the implied MVM,
completes in O((n + m)d?).

 We also show that derivatives can be
approximated as a filtering operation too!
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Small MVM Approximation Error

 We compute the cosine error incurred for an MVM w.r.t. exact
computation with a KeOps RBF kernel for benchmark datasets.

Cosine Error
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Fast Matrix-Vector Multiplies

* For large-scale datasets, Simplex-GPs can be up to 10 times faster as
compared to a single MVM computation with KeOps.
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Economical Memory Usage

e Simplex-GPs significantly reduce the peak memory footprint, by up to 10
times against competing approximate methods, and even more In
comparison to exact GPs.

Peak GPU Memory Usage (GB)
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Minimal Performance Loss

Test RMSE Performance

Dataset / Method Exact GP (KeOps) Simplex-GP SGPR
Houseelectric 0.054 0.079 0.067
Precipitation 0.937 0.939 1.033
Keggdirected 0.083 0.095 0.380
Protein 0.511 0.571 0.579
Elevators 0.399 0.510 0.356
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Faster Training

o Simplex-GPs can train faster at little loss in test performance, even when
compared to highly scalable exact GP implementation using KeOps.
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Practical Considerations

o Stability of iterative solvers for GP inference can be sensitive to the error
tolerance in conjugate gradients (CQ).

* This consideration is not limited to Simplex-GPs, but applies to CG based
methods in general.
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Train MLL

Improving Training Stability

—0.4

* Training can stabilized by using: 0.6
. . : : —0.8 Method
e early stopping while monitoring o —— Simplex-GP
performance on a held-out validation 020 a0 Lo B0 00
dataset.
0.40 Test RMSE
Method
e alower CG error tolerance, typically of 035 — SimplexGP
—_ . P 0.30
the order of 10, but can significantly .
slowdown inference. .
0.15
 randomized truncations for bias-free CG, 16 \j\w@\ .
which can alleviate slowdown. 0 20 40 0 80 100

Potapczynski®, Wu*, Biderman™, et. al. Bias-free Scalable Gaussian Processes via Randomized Truncations. ICML 2021
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When to use Simplex-GPs?

e Simplex-GPs can better exploit scenarios where we have,

» large-scale datasets with more than 100k training points.

» datasets that generate a sparse lattice, owing to
e moderate data variance, or

 moderately large kernel lengthscales.
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Getting Started with Lattice Kernels

plp 1nstall gpytorch-lattice-kernel
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A One Line Replacement in GPyTorch

* The lattice kernels can be simply dropped into existing GPyTorch models!

import gpytorch as gp
from gpytorch_lattice_kernel import RBFLattice

class SimplexGPModel(gp.models.ExactGP):
def __init__ (self, train_x, train_y):
likelihood = gp.likelihoods.GaussianLikelihood()
super().__init__ (train_x, train_y, likelihood)

self.mean_module = gp.means.ConstantMean()
self.covar_module = gp.kernels.ScaleKernel(
- gp.kernels.RBFKernel(ard_num_dims=train_x.size(-1))
+ RBFLattice(ard _num _dims=train x.size(-1), order=1)

)

def forward(self, x):
mean_x = self.mean_module(x)
covar_Xx = self.covar_module(x)
return gp.distributions.MultivariateNormal(mean_x, covar_x)
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Challenges & Outlook

 Simplex-GPs provide a favorable trade-off between computation and
performance for large-scale datasets.

* The runtime constants, however, are large such that the asymptotic gains
are only realized for large datasets.

 \We hope this cross-pollination of ideas stimulates both communities:
» scalable GP inference for even higher-dimensional data,

e and fast high-dimensional image filtering using scalable GP inference.
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Resources

perhapsbay.es/simplex-gp
¢[> perhapsbay.es/simplex-gp-code
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http://perhapsbay.es/simplex-gp
http://perhapsbay.es/simplex-gp-code

