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Mean Human Normalized Score on 54 Atari games.



1. 1. Does smoothness explain the performance?

2. 2. Are there other optimisation-related effects at play?



Spectral Normalization

Linear case: f (x) = Wx + b. Then:

f is K-Lipschitz in‖·‖2 ⇔ ‖W ‖2 ≤ K ,

where ‖W ‖2 is the largest singular value or spectral radius of W .

Approximate the largest singular value ρ of W and normalize [Miyato et al., 2018]:

ρ = one-step-power-iteration(Wt)

Ŵt = Wt/ρ
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Lipschitz constant of a Neural Network

Figure 1: Typical architecture in DRL when learning from pixels, [Arulkumaran et al., 2017]

• Linear layers φfc(x) = Wx + b can be K-Lipschitz if we constrain the spectral radius of W .

• Convolutional operators are also linear maps.

• ReLU non-liniarities and Max-Pooling are 1-Lipschitz.

For a full neural network:

L(f ) ≤
∏
i=1

L(φi )



Is it the smoothness?
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Smoothness of the neural network

(small norm of the Jacobian ‖Jyx‖) is

not consistently correlated with

performance.

Normalised score on four MinAtar games, ten

seeds each.



The optimization perspective

MLP SN+bias scaling
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where ρ−1 =
∏

i∈S ρ
−1
i . Several equivalent schedulers become apparent:

1. DivOut: output divided by ρ−1.

2. DivGrad: gradient divided by ρ−1.

3. MulEps: Adam’s ε multiplied by ρ−1.



Schedulers recover most of the effect of SN
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Figure 2: Spectral schedulers recover SN performance. Average normalised scores over MinAtar games and four

different models



Atari results
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Figure 3: Categorical-DQN Performance. Mean Human Normalized Score 54 Atari games.

We improve on Rainbow, a much more complex agent that combines many DRL advances,

while using only its cost function.



There is much to gain by designing better adapting

optimisers for Deep Reinforcement Learning.
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