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> Measuring and making sequences is central to modern biology.

> Evolutionary biology, immunology, oncology, microbiology, therapeutics, ...

> This talk is about using probabilistic machine learning to analyze, predict and
generate sequences



Designing models: from vectors to sequences

Linear regression, Gaussian
processes, principal
component analysis,

iIndependent component
analysis, ordinary differential
equations, stochastic
differential equations,
variational autoencoders,
etc.

N
biological sequences

(individual proteins, RNA, etc.)

> Models of continuous vectors or matrices are ubiquitous and useful.

> We want to apply these models to biological sequences.

> Problem: data lives in a different space with a different notion of
distance.



Conventional approach

Sequence data Multiple sequence alignment Model aligned sequences
Y7 CGCCC Ymsa,1 C--GCCC----

Yo ATGGCTCGAT Ymsa,2 ATGGCTC-GAT

Y3sACCTATGAA =P Ymsa s A-C-CTATGAA <=

Y4 CTCAA Yvsau --C-TC---AA

Y5 ACCATG Ymsas A-C-C-ATG- -

Preprocess: {Ymsa 1,.-- YmMsa. N} = fmsa({Y1,...,Yn}),
Model: V; ~ pg(v) Ymsa, ~ Categorical(softmax(V;)).

> MSA captures fundamental biology: there are conserved positions
across similar sequences, and mutations are mainly substitutions and

Indels.

> Building models this way violates fundamental statistical
assumptions: past data changes as more data is added, data
dimension (the space data lives in) changes as more data is added.

% i.i.d. assumptions break down, can't evaluate sequence predictions/forecasts
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Proposed approach

Model sequences with

Sequence data MUE observation distribution
Y; CGCCC
Yo ATGGCTCGAT
Y3 ACCTATGAA <=
Y, CTCAA k
Y5 ACCATG fatent -

alignment
variable

Model: V; ~ pg(v) Y; ~ MuE(softmax(V;),c, ¥, a(o), a(t))

> Replace preprocessing step with generative process. Instead of
filtering indels out of the data, add them in the model.

» Extend continuous vector model with our new mutational emission
(MuE) distribution.

> Model retains the key ideas behind alignment: can still talk about
variation at conserved sites, indels, etc..
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Immune receptor repertoires

Improved predictive performance

Dataset HC1 HC2 HC3 MS1 MS2 MS3
pHMM 4.29 3.59 3.56 3.59 3.47 3.54
ICAMuE 2.87 2.33 2.34 2.45 2.19 2.26

Informative latent representations Features at conserved sites
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Generative forecasts of viral evolution

Improved predictive performance
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Conclusions

> The MuUE enables application and rigorous evaluation of a wide
range of statistical models (vector models, including factor models,
regression models, image models, etc.) to biological sequences.

» The MuE both accounts for common forms of variation and avoids
the serious pathologies of MSA preprocessing, a ubiquitous
technigue used to account for the same variation.

> The MUE is now part of the Pyro probabilistic programming
language, providing a platform for building new models and
integrating information across data sources.



