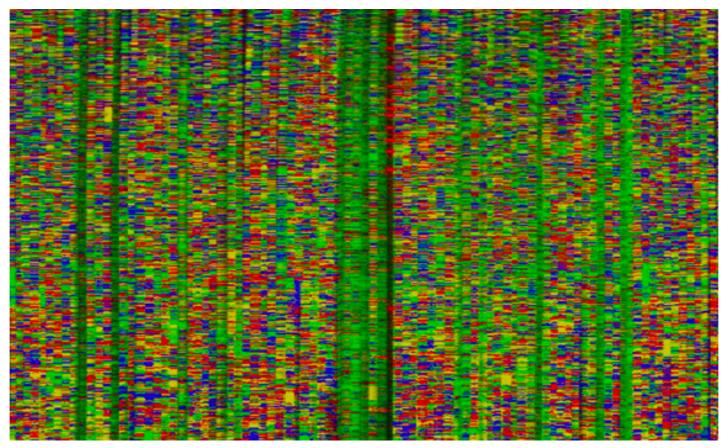
A structured observation distribution for generative biological sequence prediction and forecasting

Eli N. Weinstein and Debora S. Marks

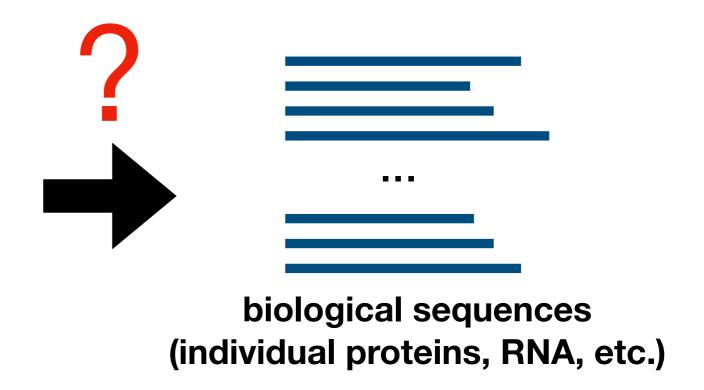


Human genome project-era fluorescent sequencer readout, Sanger Institute, Wellcome Image no. B0002668

- Measuring and making sequences is central to modern biology.
- Evolutionary biology, immunology, oncology, microbiology, therapeutics, ...
- This talk is about using probabilistic machine learning to analyze, predict and generate sequences

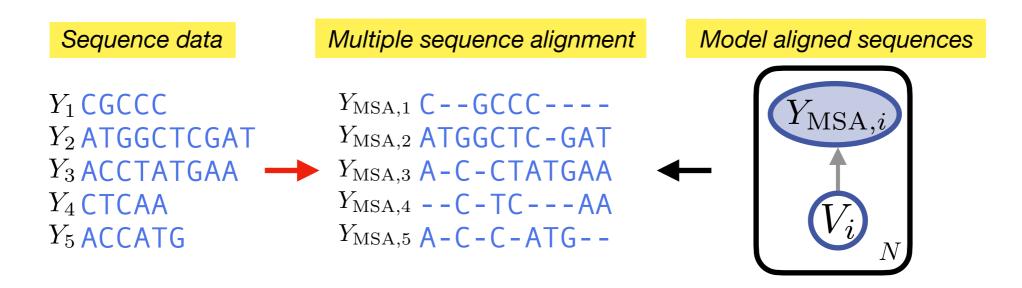
Designing models: from vectors to sequences

Linear regression, Gaussian processes, principal component analysis, independent component analysis, ordinary differential equations, stochastic differential equations, variational autoencoders, etc.



- Models of continuous vectors or matrices are ubiquitous and useful.
- We want to apply these models to biological sequences.
- Problem: data lives in a different space with a different notion of distance.

Conventional approach

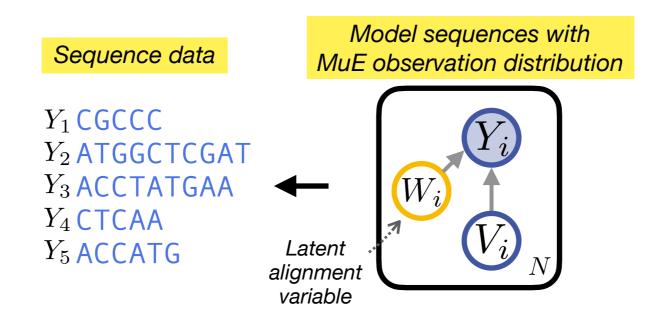


Preprocess:
$$\{Y_{MSA,1}, \dots Y_{MSA,N}\} := f_{MSA}(\{Y_1, \dots, Y_N\}),$$

Model: $V_i \sim p_{\theta}(v) \quad Y_{MSA,i} \sim \text{Categorical}(\text{softmax}(V_i)).$

- MSA captures fundamental biology: there are conserved positions across similar sequences, and mutations are mainly substitutions and indels.
- Building models this way violates fundamental statistical assumptions: past data changes as more data is added, data dimension (the space data lives in) changes as more data is added.
- → i.i.d. assumptions break down, can't evaluate sequence predictions/forecasts

Proposed approach



Model:
$$V_i \sim p_{\theta}(v)$$
 $Y_i \sim \text{MuE}(\text{softmax}(V_i), c, \ell, a^{(0)}, a^{(t)})$

- Replace preprocessing step with generative process. Instead of filtering indels out of the data, add them in the model.
- Extend continuous vector model with our new mutational emission (MuE) distribution.
- Model retains the key ideas behind alignment: can still talk about variation at conserved sites, indels, etc..

Immune receptor repertoires

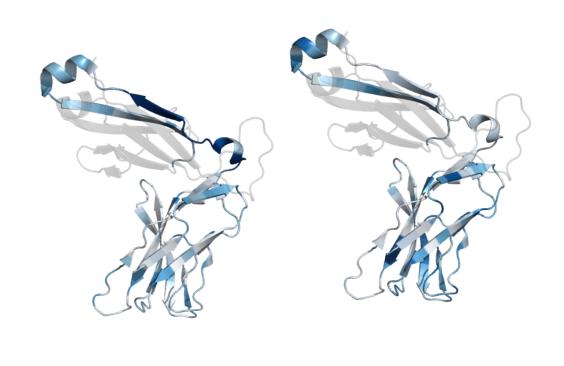
Improved predictive performance

Dataset	HC 1	HC 2	HC 3	MS 1	MS 2	MS 3
pHMM	4.29	3.59	3.56	3.59	3.47	3.54
ICAMuE	2.87	2.33	2.34	2.45	2.19	2.26

Informative latent representations

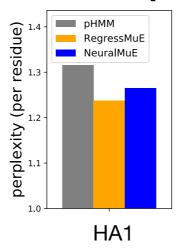
C_{α} and C_{β} V Region Types C_{α} C_{α}

Features at conserved sites

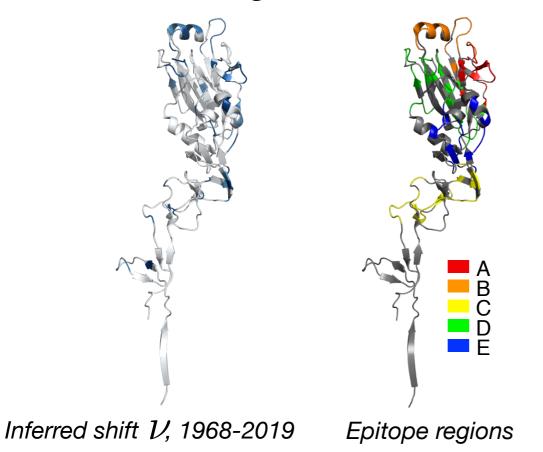


Generative forecasts of viral evolution

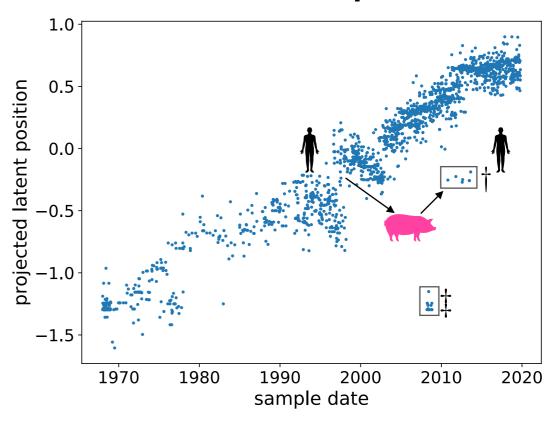
Improved predictive performance



Informative regression coefficients



Informative latent representations



Conclusions

- The MuE enables application and rigorous evaluation of a wide range of statistical models (vector models, including factor models, regression models, image models, etc.) to biological sequences.
- The MuE both accounts for common forms of variation and avoids the serious pathologies of MSA preprocessing, a ubiquitous technique used to account for the same variation.
- The MuE is now part of the Pyro probabilistic programming language, providing a platform for building new models and integrating information across data sources.