Unsupervised Learning of Visual 3D Keypoints for Control

Boyuan Chen
UC Berkeley

Pieter Abbeel
UC Berkeley

Deepak Pathak CMU

Learning keypoints from pixels

OpenPose: Realtime Multi-Person 2D Pose Estimation using Part Affinity Fields, Cao et al., 2018

Unsupervised 2D Keypoints learning

Unsupervised 3D Keypoints

Discovery of Latent 3D Keypoints via End-to-end Geometric Reasoning, Suwajanakorn et al., 2018

Self-supervised 3D structure learning

Dense Object Nets: Learning Dense Visual Object Descriptors By and For Robotic Manipulation, Florence et al., 2018

Semi-supervised 3D Keypoints

We hope to learn keypoints:

- in 3D world coordinates
- without supervision
- are good representation for control

Our 3D Keypoint: Setup

Our 3D Keypoint: Keypoint learning

Our 3D Keypoint: policy

Method: encoder

Fully differentiable keypoint bottleneck

Depth parameterization

Method: encoder

Method: decoder

xyz coordinate regains 2D structure in a fully differentiable way!

Method: decoder

Method: auto-encoding loss

Core intuition:

To best decode to original image, the 2D gaussians have centers aligned with meaningful points

Method: multi-view consistency loss

Core intuition:

Some point movements are visible from camera A but not camera B, B must learn to "hallucinate" these points to minimize disagreement

Method: policy

Method: attention

Softmax along # camera dimension
Use mean logits of each map as attention logit

Allow model to ignore unconfident estimations!

Random crop as self-supervision

Coordinates must align with the random cropping to predict well

Temporal variant

Differences between keypoint prediction is velocity vector! Explicitly normalize as movement feature

Visualization of Learned 3D Keypoints

Close Box

Hammer Nail

Visualization of Learned 3D Keypoints

*attention can be used to filter out unconfident predictions with a threshold!

Visualization of Learned 3D Keypoints

Experiments Overview

Effectiveness of 3d keypoints for control

- Sample efficiency compared to other representation
- Scalability to higher dimensional control problems(pybullet ant)
- Effectiveness on low-textured objects
- Ability to adapt to deformable objects (scarf manipulation)

Sample efficiency in manipulation

High dimensional control and low textured variant

Deformable manipulation

- We propose a framework to learn 3D keypoints without supervision for continuous control
- We leverage multi-view auto-encoding with a 3D keypoint bottleneck to learn meaningful 3d keypoints; We jointly train policy learning in conjunction with keypoint learning
- Our method achieves significant sample efficiency improvement in a variety of 3D environments.
- The 3D keypoints learned by our algorithm are consistent across space and time.

We hope our method serves as a bridge between pixel domain and 3D control tasks.

- [Website] https://buoyancy99.github.io/unsup-3d-keypoints
- [Code] https://github.com/buoyancy99/unsup-3d-keypoints
- [Paper] https://arxiv.org/pdf/2106.07643.pdf