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Functional Data Analysis (FDA)

Functional data are random functions defined on an interval or any
k-dimensional domain.

@ Example 1. Continuous stochastic processes, such as Gaussian
processes on [0, 1].

@ Example 2. Household electricity consumption over a period.

e Functional data analysis (FDA) deals with the analysis of functional
data.
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Functional Data Analysis (FDA)

@ Functional data are intrinsically infinite dimensional and generated by
smooth underlying processes.

@ The smoothness property is beneficial: the observed measurements at
one location ty can inform us of X(t) for t at nearby locations.

@ Functional data are replicated trajectories, whereas time series data
are usually repeated measurements of one subject.
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Functional Data Analysis (FDA)

Formally, let X(t) denote a random function on [0, 1].

Assume T : X(t) = Y.

Objective: Use X(t) to infer/predict some response Y.
o Goal: estimate 7 from the data using neural networks.

Data: i.i.d. copies of (X(t),Y) = {(Xi(t), Yi)}";.
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Functional Neural Network (FNN)

e In reality, X;(t) are observed at discrete times {ty,--- ,t;41}.

The observed data are

{ [Xi(t1), -+, Xi(tys1)] }7:1

high-dimensional data
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Existing Methods

@ Discretization: estimate an approximate relationship
Thinite © [Xi(t1), - -+, Xi(ts41)] — Vi
Use the vector of discrete observations as a network input.

@ Basis representation/ dimension reduction:

K
X(t) =) adu(t)
k=1

for a set of K continuous basis functions {¢x(t)}5_.

Use [a1, ..., ak]| as a network input.
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Drawbacks

@ Functional data are typically high-dimensional.
@ Discretization doesn't respect the continuity of functional covariates.

@ The choice of the bases is often done manually without incorporating
the information contained in Y.
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Our Proposal: AdaFNN
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Basis layer

Add a basis layer, which consists of a number of Basis Nodes, that
computes a score ¢; of X(t) w.r.t. the basis 3;(t)
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Figure: An overview of AdaFNN
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Our Proposal: AdaFNN

Each basis function 3;(t) can be approximated by a network ! nng.(t)
with weights ©;.

J+1 ~
— Y ;- Nne (1) - X(t) |—C;
= ~ (ﬂiv X)

Figure: A basis node

A similar idea was briefly mentioned in Rossi and Conan-Guez (2005) without actual implementation. It can also be
approximated using a basis representation.
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Our Proposal: AdaFNN

@ Unlike previous two-step models (basis expansion), our model can be
trained end-to-end.

@ The dimension reduction step and the subsequent fitting step are
synchronized in AdaFNN.

= Learned basis functions are likely better suited for the desired task.

@ The learned bases are continuous by construction.
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Theoretical Results

Let C([0, 1]) denote the space of continuous functions defined on the
compact interval [0, 1]. Assume that the underlying mapping 7 : X — Y
is a composite of a finite-dimensional linear transformation and a
subsequent non-linear transformation.

Thatis, 7 = ho g, where g : C([0,1]) — R is a linear continuous map,
and h:R9 — R is a non-linear continuous map.

There exists an AdaFNN that can achieve arbitrarily small error. l
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Simulation

Model .
X(t) = cdu(t), telo1],
k=1

where terms on the right hand are defined as:

Q@ ¢1(t) =1 and ¢y (t) = V2cos((k — 1)nt), k=2,...,50;

@ cx = zkrx, and ri are i.i.d. uniform random variables on [—v/3,/3].
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Simulation

Case 1: z7 =20,zp = z3 =05, and z, = 1 for k > 4.
The response y = ({¢3, X))

Use AdaFNN(0, 0) with 2 bases:
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Figure: ¢3 ~ q33 = Bg — Bl
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Simulation
Case 4: z, = 1 for all k. The response is y = (B2, X) + ({31, X))?, where

Bi(t) =(4—16t)-1{0 <t <1/4}
and
Pa(t) = (4 —16[1/2 — t[) - 1{1/4 < t < 3/4}.
Centered Gaussian noise is added to Y, and X(t) is also contaminated by
measurement error.

Use AdaFNN(0,0) with 2 bases:

4.0 true beta 1 4.0 true beta 2
leamne: d basis 1 leamne: d basis 2
35 35
3.0 3.0
2.5 2.5
2.0 2.0
15 15
10 10
05 05
0.0 0.0

0.0 02 0.4 0.6 0.8 10 0.0 02 0.4 0.6 0.8 10

AdaFNN 14/16



Real Data Experiments

In 9 regression /classification tasks over four different datasets 2, AdaFNN
empirically outperforms all baseline models.

METHOD TASK 1 TASK2 TASK3 Task4 Task5 TASK6 TAsKk7 TAsSK8 TAsK9
RAW DATA (48) + NN 0.099 0.284  0.124 0.296  0.380 0.488  0.472 0.406  0.373
B-SPLINE (15) + NN 0.094 0.306  0.137 0.326  0.335 0.477  0.429 0.413  0.387
FPCAg.99 + NN 0.119 0.339  0.143 0.306  0.363 0.493  0.431 0.429  0.378
ADAFNN (0.0, 0.0) 0.084* 0.290*  0.129% 0311 0.365 0.477  0.410°  0.377"  0.375
ADAFNN (0.0, 1.0) 0.094 0.276  0.126 0.327  0.561 0.479%  0.498 0.374  0.392
ADAFNN (0.0, 2.0) 0.097 0.276  0.129 0.324  0.596 0.481  0.473 0.381  0.445
ADAFNN (0.5, 0.0) 0.108 0.260  0.130 0.310"  0.380" 0.490  0.410 0.376  0.368"
ADAFNN (0.5, 1.0) 0.089 0.279  0.126 0.324  0.616 0.486  0.494 0.362 0413
ADAFNN (0.5, 2.0) 0.098 0.280  0.128 0.345  0.392 0.509  0.444 0.373  0.450
ADAFNN (1.0, 0.0) 0.084 0.288  0.118 0.294  0.339 0.485 0.413 0.378  0.406
ADAFNN (1.0, 1.0) 0.097 0.282  0.133 0.320  0.651 0.502  0.456 0.371  0.394
ADAFNN (1.0, 2.0) 0.092 0.279  0.127 0.326  0.371 0.510 0.414 0.374  0.416

Figure: For each task, the asterisk indicates which AdaFNN hyperparameters performed
best on the validation set, and the best performing method on the test data is indicated

in bold.

2
UK Power electricity data, wearable device data, Medfly and Mexfly data
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Thank you!
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