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Functional Data Analysis (FDA)

Functional data are random functions defined on an interval or any
k-dimensional domain.

Example 1. Continuous stochastic processes, such as Gaussian
processes on [0, 1].

Example 2. Household electricity consumption over a period.

Functional data analysis (FDA) deals with the analysis of functional
data.
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Functional Data Analysis (FDA)

Functional data are intrinsically infinite dimensional and generated by
smooth underlying processes.

The smoothness property is beneficial: the observed measurements at
one location t0 can inform us of X (t) for t at nearby locations.

Functional data are replicated trajectories, whereas time series data
are usually repeated measurements of one subject.
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Functional Data Analysis (FDA)

Formally, let X (t) denote a random function on [0, 1].

Assume T : X (t)→ Y .

Objective: Use X (t) to infer/predict some response Y .

Goal: estimate T from the data using neural networks.

Data: i.i.d. copies of (X (t),Y ) = {(Xi (t),Yi )}ni=1.

AdaFNN 4 / 16



Functional Neural Network (FNN)

In reality, Xi (t) are observed at discrete times {t1, · · · , tJ+1}.

The observed data are{
[Xi (t1), · · · ,Xi (tJ+1)]︸ ︷︷ ︸

high-dimensional data

}n
i=1
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Existing Methods

Discretization: estimate an approximate relationship

Tfinite : [Xi (t1), . . . ,Xi (tJ+1)]→ Yi .

Use the vector of discrete observations as a network input.

Basis representation/ dimension reduction:

X (t) ≈
K∑

k=1

akφk(t)

for a set of K continuous basis functions {φk(t)}Kk=1.

Use [a1, . . . , aK ] as a network input.
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Drawbacks

Functional data are typically high-dimensional.

Discretization doesn’t respect the continuity of functional covariates.

The choice of the bases is often done manually without incorporating
the information contained in Y .
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Our Proposal: AdaFNN

Add a basis layer, which consists of a number of Basis Nodes, that
computes a score ci of X (t) w.r.t. the basis βi (t),

ci = 〈βi ,X 〉 =

∫
βi (t) · X (t) dt.

Figure: An overview of AdaFNN
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Our Proposal: AdaFNN

Each basis function βi (t) can be approximated by a network 1 nnΘi
(t)

with weights Θi .

Figure: A basis node

1
A similar idea was briefly mentioned in Rossi and Conan-Guez (2005) without actual implementation. It can also be

approximated using a basis representation.
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Our Proposal: AdaFNN

Unlike previous two-step models (basis expansion), our model can be
trained end-to-end.

The dimension reduction step and the subsequent fitting step are
synchronized in AdaFNN.

⇒ Learned basis functions are likely better suited for the desired task.

The learned bases are continuous by construction.
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Theoretical Results

Let C([0, 1]) denote the space of continuous functions defined on the
compact interval [0, 1]. Assume that the underlying mapping T : X 7→ Y
is a composite of a finite-dimensional linear transformation and a
subsequent non-linear transformation.

That is, T = h ◦ g , where g : C([0, 1])→ Rq is a linear continuous map,
and h : Rq → R is a non-linear continuous map.

Theorem 1

There exists an AdaFNN that can achieve arbitrarily small error.
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Simulation

Model

X (t) =
50∑
k=1

ckφk(t), t ∈ [0, 1],

where terms on the right hand are defined as:

1 φ1(t) = 1 and φk(t) =
√

2 cos((k − 1)πt), k = 2, . . . , 50;

2 ck = zk rk , and rk are i.i.d. uniform random variables on [−
√

3,
√

3].
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Simulation

Case 1: z1 = 20, z2 = z3 = 5, and zk = 1 for k ≥ 4.

The response y = (〈φ3,X 〉)2.

Use AdaFNN(0, 0) with 2 bases:

Figure: φ3 ≈ φ̂3 = β̂2 − β̂1
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Simulation
Case 4: zk = 1 for all k. The response is y = 〈β2,X 〉+ (〈β1,X 〉)2, where

β1(t) = (4− 16t) · 1{0 ≤ t ≤ 1/4}
and

β2(t) = (4− 16|1/2− t|) · 1{1/4 ≤ t ≤ 3/4}.
Centered Gaussian noise is added to Y , and X (t) is also contaminated by
measurement error.

Use AdaFNN(0, 0) with 2 bases:
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Real Data Experiments

In 9 regression/classification tasks over four different datasets 2, AdaFNN
empirically outperforms all baseline models.

Figure: For each task, the asterisk indicates which AdaFNN hyperparameters performed
best on the validation set, and the best performing method on the test data is indicated
in bold.

2
UK Power electricity data, wearable device data, Medfly and Mexfly data
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Thank you!
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