Deep Learning for Functional Data Analysis with Adaptive Basis Layers

Junwen Yao ¹ Jonas Mueller ² Jane-Ling Wang ¹

¹University of California, Davis

 $^2 A mazon$

AdaFNN 1/16

Functional Data Analysis (FDA)

- Functional data are random functions defined on an interval or any *k*-dimensional domain.
- Example 1. Continuous stochastic processes, such as Gaussian processes on [0, 1].
- Example 2. Household electricity consumption over a period.
- Functional data analysis (FDA) deals with the analysis of functional data.

AdaFNN 2 / 16

Functional Data Analysis (FDA)

- Functional data are intrinsically infinite dimensional and generated by smooth underlying processes.
- The smoothness property is beneficial: the observed measurements at one location t_0 can inform us of X(t) for t at nearby locations.
- Functional data are replicated trajectories, whereas time series data are usually repeated measurements of one subject.

AdaFNN 3/16

Functional Data Analysis (FDA)

- Formally, let X(t) denote a random function on [0,1].
- Assume $\mathcal{T}: X(t) \to Y$.
- Objective: Use X(t) to infer/predict some response Y.
- ullet Goal: estimate ${\mathcal T}$ from the data using neural networks.

Data: i.i.d. copies of
$$(X(t), Y) = \{(X_i(t), Y_i)\}_{i=1}^n$$
.

AdaFNN 4 / 16

Functional Neural Network (FNN)

• In reality, $X_i(t)$ are observed at discrete times $\{t_1, \dots, t_{J+1}\}$.

The observed data are

$$\left\{\begin{array}{c} [X_i(t_1), \cdots, X_i(t_{J+1})] \\ \text{high-dimensional data} \end{array}\right\}_{i=1}^n$$

AdaFNN 5 / 16

Existing Methods

• Discretization: estimate an approximate relationship

$$\mathcal{T}_{\mathsf{finite}}: [X_i(t_1), \dots, X_i(t_{J+1})] \to Y_i.$$

Use the vector of discrete observations as a network input.

Basis representation/ dimension reduction:

$$X(t) pprox \sum_{k=1}^K a_k \phi_k(t)$$

for a set of K continuous basis functions $\{\phi_k(t)\}_{k=1}^K$.

Use $[a_1, \ldots, a_K]$ as a network input.

◆ロト ◆御 ト ◆ 恵 ト ◆ 恵 ・ 夕 Q ○

AdaFNN 6/16

Drawbacks

- Functional data are typically high-dimensional.
- Discretization doesn't respect the continuity of functional covariates.
- The choice of the bases is often done manually without incorporating the information contained in Y.

AdaFNN 7 / 16

Our Proposal: AdaFNN

Add a basis layer, which consists of a number of Basis Nodes, that computes a score c_i of X(t) w.r.t. the basis $\beta_i(t)$,

$$c_i = \langle \beta_i, X \rangle = \int \beta_i(t) \cdot X(t) dt.$$

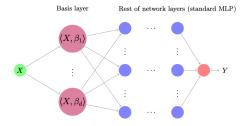


Figure: An overview of AdaFNN

AdaFNN 8 / 16

Our Proposal: AdaFNN

Each basis function $\beta_i(t)$ can be approximated by a network 1 nn $_{\Theta_i}(t)$ with weights Θ_i .

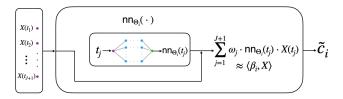


Figure: A basis node

AdaFNN 9 / 16

A similar idea was briefly mentioned in Rossi and Conan-Guez (2005) without actual implementation. It can also be approximated using a basis representation.

Our Proposal: AdaFNN

- Unlike previous two-step models (basis expansion), our model can be trained end-to-end.
- The dimension reduction step and the subsequent fitting step are synchronized in AdaFNN.
- ⇒ Learned basis functions are likely better suited for the desired task.
 - The learned bases are continuous by construction.

AdaFNN 10 / 16

Theoretical Results

Let $\mathcal{C}([0,1])$ denote the space of continuous functions defined on the compact interval [0,1]. Assume that the underlying mapping $\mathcal{T}:X\mapsto Y$ is a composite of a finite-dimensional linear transformation and a subsequent non-linear transformation.

That is, $\mathcal{T} = h \circ g$, where $g : \mathcal{C}([0,1]) \to \mathbb{R}^q$ is a linear continuous map, and $h : \mathbb{R}^q \to \mathbb{R}$ is a non-linear continuous map.

Theorem 1

There exists an AdaFNN that can achieve arbitrarily small error.

AdaFNN 11 / 16

Simulation

Model

$$X(t) = \sum_{k=1}^{50} c_k \phi_k(t), \quad t \in [0,1],$$

where terms on the right hand are defined as:

- **1** $\phi_1(t) = 1$ and $\phi_k(t) = \sqrt{2}\cos((k-1)\pi t), k = 2, ..., 50;$
- ② $c_k = z_k r_k$, and r_k are i.i.d. uniform random variables on $[-\sqrt{3}, \sqrt{3}]$.

◆ロト ◆部ト ◆恵ト ◆恵ト ・恵 ・ 釣へ○

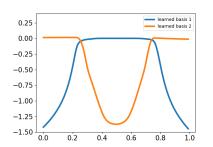
AdaFNN 12 / 16

Simulation

Case 1: $z_1 = 20, z_2 = z_3 = 5$, and $z_k = 1$ for $k \ge 4$.

The response $y = (\langle \phi_3, X \rangle)^2$.

Use AdaFNN(0,0) with 2 bases:



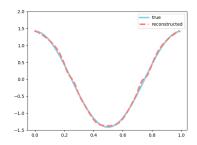


Figure: $\phi_3 \approx \hat{\phi}_3 = \hat{\beta}_2 - \hat{\beta}_1$

AdaFNN 13 / 16

Simulation

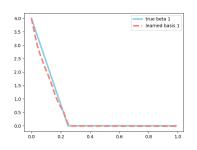
Case 4: $z_k=1$ for all k. The response is $y=\langle \beta_2,X\rangle+(\langle \beta_1,X\rangle)^2$, where $\beta_1(t)=(4-16t)\cdot 1\{0\leq t\leq 1/4\}$

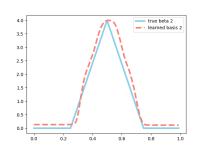
and

$$\beta_2(t) = (4 - 16|1/2 - t|) \cdot 1\{1/4 \le t \le 3/4\}.$$

Centered Gaussian noise is added to Y, and X(t) is also contaminated by measurement error.

Use AdaFNN(0,0) with 2 bases:





200

AdaFNN 14 / 16

Real Data Experiments

In 9 regression/classification tasks over four different datasets ², AdaFNN empirically outperforms all baseline models.

МЕТНОО	Task 1	Task 2	Task 3	TASK 4	Task 5	Task 6	Task 7	Task 8	TASK 9
RAW DATA (48) + NN	0.099	0.284	0.124	0.296	0.380	0.488	0.472	0.406	0.373
B-SPLINE $(15) + NN$	0.094	0.306	0.137	0.326	0.335	0.477	0.429	0.413	0.387
$FPCA_{0.99} + NN$	0.119	0.339	0.143	0.306	0.363	0.493	0.431	0.429	0.378
ADAFNN (0.0, 0.0)	0.084*	0.290*	0.129*	0.311	0.365	0.477	0.410^{*}	0.377^{*}	0.375
ADAFNN (0.0, 1.0)	0.094	0.276	0.126	0.327	0.561	0.479*	0.498	0.374	0.392
ADAFNN (0.0, 2.0)	0.097	0.276	0.129	0.324	0.596	0.481	0.473	0.381	0.445
ADAFNN (0.5, 0.0)	0.108	0.260	0.130	0.310*	0.380^{*}	0.490	0.410	0.376	0.368*
ADAFNN (0.5, 1.0)	0.089	0.279	0.126	0.324	0.616	0.486	0.494	0.362	0.413
ADAFNN (0.5, 2.0)	0.098	0.280	0.128	0.345	0.392	0.509	0.444	0.373	0.450
ADAFNN (1.0, 0.0)	0.084	0.288	0.118	0.294	0.339	0.485	0.413	0.378	0.406
ADAFNN (1.0, 1.0)	0.097	0.282	0.133	0.320	0.651	0.502	0.456	0.371	0.394
ADAFNN (1.0, 2.0)	0.092	0.279	0.127	0.326	0.371	0.510	0.414	0.374	0.416

Figure: For each task, the asterisk indicates which AdaFNN hyperparameters performed best on the validation set, and the best performing method on the test data is indicated in bold.

AdaFNN 15 / 16

Thank you!

AdaFNN 16 / 16