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The Need for Privacy-Preserving Machine Learning

Privacy concerns are growing

Privacy-preserving computation
breaks the privacy-utility tradeoff.
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Private Inference

In Private Inference

e Client learns nothing about Server’s model

e Server learns nothing about Client's data.
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RelLU is the Source of Slowdown in Private Inference

Linear layers use

Inverted operator latency in
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1. Ghodsi et al., CryptoNAS: Private Inference on a ReLU Budget, NeurlPS’20




DeepReDuce: RelLU Dropping for Fast Private Inference

If ReLUs are so problematic, can we simply remove them?

Yes, in DeepReDuce we exploit the ReLUs’ heterogeneity and drop/remove the
less-critical ReLUs while preserving the most-critical ReLUs with negligible
impact on accuracy.

We achieve 4.9x and 5.7x ReLU reduction on CIFAR-100 and TinylmageNet
(respectively) for ResNet18 without losing accuracy.



RelLU Optimization in DeepReDuce
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Experimental Results

Comparison with SOTA DeepReDuce on MNetV1 Comparison with ch. pruning1
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3.5% accuracy gain (iso-ReLU), DeepReDuce generalize 2x more ReLU savings with
3.5x RelLU saving (iso-accuracy) beyond ResNet similar FLOPs and accuracy

1. He et al., Learning Filter Pruning Criteria for Deep Convolutional Neural Networks Acceleration, CVPR 2020



Takeaways from DeepReDuce

1. DeepReDuce strategically drops RelLUs upto 4.9x with no loss in accuracy
and achieves 3.5x RelLU saving over SOTA.

2. The key insight is ReLUs do not equally contribute to accuracy and
less-critical ReLUs can be dropped with negligible accuracy loss.

3. Existing techniques for FLOPs/parameter optimization are not optimized for
ReLU redUCtlon ¢ ReLU Count (K) ® Latency (Sec.) = =T T
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