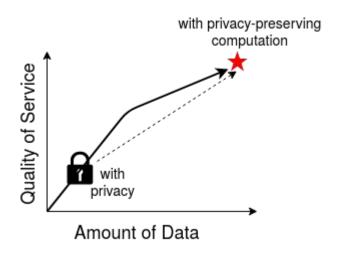
DeepReDuce: ReLU Reduction for Fast Private Inference

Nandan Kumar Jha, Zahra Ghodsi, Siddharth Garg, Brandon Reagen New York University ICML'21

The Need for Privacy-Preserving Machine Learning

Privacy concerns are growing

Privacy-preserving computation **breaks** the privacy-utility tradeoff.

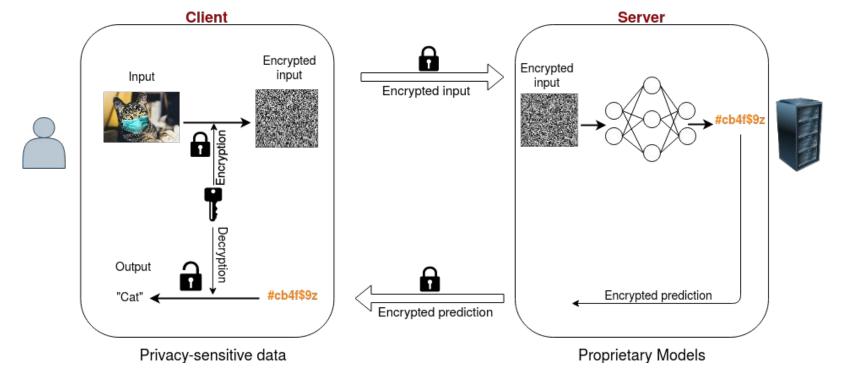


88% companies spent >**\$1M** for compliance with GDPR in 2020¹.

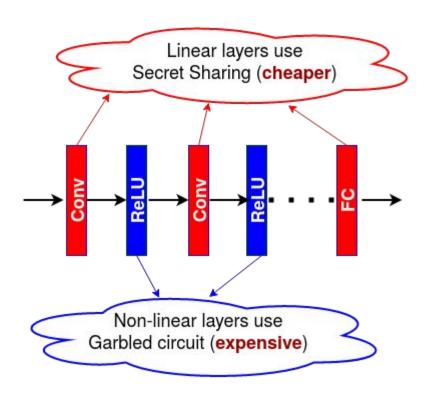
Private Inference

In Private Inference

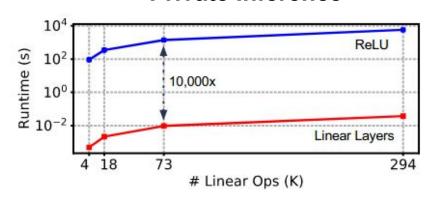
- Client learns nothing about Server's model
- Server learns nothing about Client's data.



ReLU is the Source of Slowdown in Private Inference



Inverted operator latency in Private Inference



ReLU dominates the network's private inference time¹

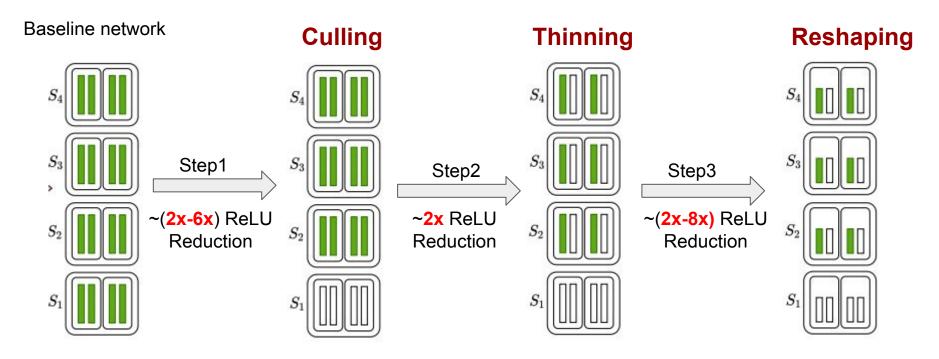
DeepReDuce: ReLU Dropping for Fast Private Inference

If ReLUs are so problematic, can we simply remove them?

Yes, in DeepReDuce we exploit the ReLUs' heterogeneity and drop/remove the less-critical ReLUs while preserving the most-critical ReLUs with negligible impact on accuracy.

We achieve **4.9x** and **5.7x** ReLU reduction on CIFAR-100 and TinyImageNet (respectively) for ResNet18 without losing accuracy.

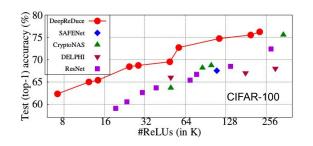
ReLU Optimization in DeepReDuce



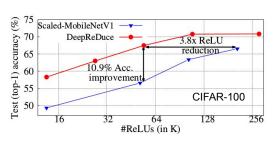
Green bars = Layers with ReLUs White bars = Layers without ReLUs

Experimental Results

Comparison with SOTA



DeepReDuce on MNetV1



Comparison with ch. pruning¹

	Method	Baseline Acc.(%)	Pruned Acc.(%)		FLOPs	ReLUs
C10	Channel pruning	93.59	93.34	-0.25	59.1M	311.7K
	DeepReDuce	93.48	94.07	+0.59	87.7M	221.2K
			93.16	-0.32	66.5M	147.5K
C100	Channel pruning	71.41	70.83	-0.58	60.8M	311.7K
	DeepReDuce	70.93	73.66	+2.57	87.7M	221.2K
			71.68	+0.59	66.5M	147.5K

3.5% accuracy gain (iso-ReLU),3.5x ReLU saving (iso-accuracy)

DeepReDuce **generalize** beyond ResNet

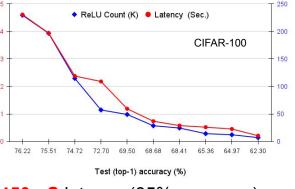
2x more ReLU savings with similar FLOPs and accuracy

Takeaways from DeepReDuce

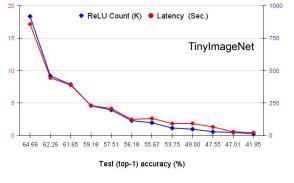
- DeepReDuce strategically drops ReLUs upto 4.9x with no loss in accuracy and achieves 3.5x ReLU saving over SOTA.
- 2. The **key insight** is ReLUs *do not equally* contribute to accuracy and less-critical ReLUs can be dropped with negligible accuracy loss.

3. Existing techniques for FLOPs/parameter optimization are not optimized for

ReLU reduction.



450mS latency (65% accuracy)



4.6S latency (60% accuracy)