Globally Robust Neural Networks

Klas Leino, Zifan Wang, Matt Fredrikson | Carnegie Mellon University

Robustness Guarantees

Defense against *adversarial examples*

A model F satisfies *local robustness* with robustness radius ε on a point x if

$$\forall x'. \|x - x'\|_p \le \varepsilon \implies F(x) = F(x')$$

Our Contributions

We introduce a notion of *global* robustness

We devise a way to construct a type of network that is globally robust by construction

Our globally-robust networks are efficient to train and can certify points in a single forward pass

Global Robustness

A model F satisfies *global robustness* with robustness radius ε if $\forall x$

- F is $(\epsilon/2)$ -locally robust at x or
- $F(x) = \bot$

Globally Robust Neural Networks (GloRo Nets)

If this margin is sufficiently large, a small change to the input will not allow class 2 to surpass class 1

Globally Robust Neural Networks (GloRo Nets)

Globally Robust Neural Networks (GloRo Nets)

Summary of Results

GloRo Nets match or exceed VRA of previous state-of-the art deterministic certification methods

¹Tsuzuku et al., 2018; ²Wong & Kolter, 2018; ³Lee et al., 2020; ⁴Li et al., 2019

Summary of Results

GloRo Net certification and training is significantly more time and memory efficient than other methods, and more scalable than any other deterministic method

CIFAR-10	method	time to certify test set (s)	memory per instance (MB)
	GloRo	0.4	1.8
	KW ¹	2,500.0	1,400.0
	BCP ²	5.8	19.1
	RS ³	36,800.0	19.8

Conclusion

Summary

We provide a scalable approach to deterministic robustness certification that achieves state-of-the-art VRA using only a single forward pass of the network for certification.

Check Out Our Paper!

- Paper on ArXiv
- Implementation on GitHub https://github.com/klasleino/gloro

