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Many (neural) classifiers can be abstracted as follows:
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Background

Predominantly, we minimize cross-entropy, wrt. (θ,W), i.e.,

(xi, yi), yi = c

CrossEntropy(softmax(oi), ec)
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Prior work

Within this regime, several avenues have been pursued.

This includes (among others):

▶ Fixing the classifier weights
(e.g., random or, a-priori, max. spaced on the sphere)

[Hoffer et al., ICLR ’18]
[Mettes et al., NeurIPS ’19]

▶ Promoting max. spaced classifier weights on the sphere
(as optimization objective)

[Liu et al., NeurIPS ’18]

▶ Theoretically studying neural collapse phenomena
(in the terminal stage of training)

[Papyan et al., PNAS ’20]
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Background

Alternatively, [Khosla et al., NeurIPS ’20], directly optimize φθ:

Step 2

En
co
de
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φ

θ

⇝zi ∈ Z = Sh−1
ρ

oi ∈ R#classes
Wzi

(xi, yi), yi = c

CrossEntropy(softmax(oi), ec) optimize W

⇝



Prior work

A recent body of work considers theoretical aspects of
contrastive learning in an

unsupervised/self-supervised regime.

This includes:
▶ Generalization guarantees for downstream classifiers

(by formalizing semantic similarity via latent classes)
[Arora et al., ICML ’19]

▶ Asymptotic geometric properties of representations
(by studying alignment & uniformity)

[Wang & Isola, ICML ’20]
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Problem statement

Question

Are representations, learned by φθ

1. via the cross-entropy (CE), or
2. via the supervised contrastive (SC)

objective, geometrically similar?

We study this question at optimality, i.e., which N-points

Zθ = (φθ(x1), . . . , φθ(xN)) ∈ ZN

minimize the CE / SC loss?
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Problem statement

Formally¹,

argmin
θ

loss(φθ(x1), . . . , φθ(xN);Y)

Assumption

We assume a powerful enough² encoder φθ.

Hence, we search for configurations of N (free) points, i.e.,

Z = (z1, . . . , zN) ∈ ZN

minimizing the CE and the SC loss, respectively.

¹for CE, the classifier weights, W, need to be included as well

²capable of yielding any geometric arrangement of (φθ(x1), . . . , φθ(xN)) ∈ ZN
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LCE(Z,W;Y)

(Regular simplex) conjecture

▶ Classes collapse to a point
▶ These points are maximally separated
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Recap: Regular simplex
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ζ1, . . . , ζK ∈ Rh form (the vertices of) an

origin-centered regular simplex inscribed in Sh−1
ρ

if and only if the following conditions hold:

S1. origin-centered: 1
K

∑
i∈[K] ζi = 0

S2. sphere-inscribed: ∥ζi∥ = ρ for i ∈ [K]

S3. regular: ∃d ∈ R : d = ∥ζi − ζj∥ for 1 ≤ i < j ≤ K
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Proof Idea

Bound the loss functions by a sequence of inequalities
(using Jensen, Cauchy-Schwarz)

loss
(∗)
≥ . . .

(∗∗)
≥ . . .

(∗∗∗)
≥ tight lower bound

Show that

simplex conditions
(S1), (S2), (S3)

⇔
necessary and sufficient

equality conditions
(∗), (∗∗), (∗ ∗ ∗)



Theory – Challenges



Theory – Challenges

▶ Loss function is not sample-wise but batch-wise

−
∑

B∈B
∑

i∈B
1|Byi |>1

|Byi |−1

∑
j∈Byi\{{i}} log

(
exp(⟨zi,zj⟩)∑

k∈B\{{i}}exp(⟨zi,zk⟩)

)LSC(Z;Y)LSC(Z;Y)



Theory – Challenges

▶ Loss function is not sample-wise but batch-wise
▶ No common minimizer for all batch-wise contributions

−
∑

B∈B
∑

i∈B
1|Byi |>1

|Byi |−1

∑
j∈Byi\{{i}} log

(
exp(⟨zi,zj⟩)∑

k∈B\{{i}}exp(⟨zi,zk⟩)

)LSC(Z;Y)LSC(Z;Y)



Theory – Challenges

▶ Loss function is not sample-wise but batch-wise
▶ No common minimizer for all batch-wise contributions

−
∑

B∈B
∑

i∈B
1|Byi |>1

|Byi |−1

∑
j∈Byi\{{i}} log

(
exp(⟨zi,zj⟩)∑

k∈B\{{i}}exp(⟨zi,zk⟩)

)LSC(Z;Y)LSC(Z;Y)Label configuration

Minimizer

Example: Batch size 9



Theory – Challenges

▶ Loss function is not sample-wise but batch-wise
▶ No common minimizer for all batch-wise contributions

−
∑

B∈B
∑

i∈B
1|Byi |>1

|Byi |−1

∑
j∈Byi\{{i}} log

(
exp(⟨zi,zj⟩)∑

k∈B\{{i}}exp(⟨zi,zk⟩)

)LSC(Z;Y)LSC(Z;Y)Label configuration

Minimizer

Example: Batch size 9



Theory – Challenges

▶ Loss function is not sample-wise but batch-wise
▶ No common minimizer for all batch-wise contributions

−
∑

B∈B
∑

i∈B
1|Byi |>1

|Byi |−1

∑
j∈Byi\{{i}} log

(
exp(⟨zi,zj⟩)∑

k∈B\{{i}}exp(⟨zi,zk⟩)

)LSC(Z;Y)LSC(Z;Y)Label configuration

Minimizer

Example: Batch size 9



Theory – Challenges

▶ Loss function is not sample-wise but batch-wise
▶ No common minimizer for all batch-wise contributions

−
∑

B∈B
∑

i∈B
1|Byi |>1

|Byi |−1

∑
j∈Byi\{{i}} log

(
exp(⟨zi,zj⟩)∑

k∈B\{{i}}exp(⟨zi,zk⟩)

)LSC(Z;Y)LSC(Z;Y)Label configuration

Minimizer

Example: Batch size 9



Theory – Challenges

▶ Loss function is not sample-wise but batch-wise
▶ No common minimizer for all batch-wise contributions
▶ Attraction and repulsion forces depend on

all other representations in the batch!
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Theorem Cross-Entropy

Let Z = {z ∈ Rh : ∥z ∥ ≤ ρZ}. If labels Y are balanced, then
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√
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The lower bound decreases with ∥wi∥

Adding L2-regularization with strength λ determines the wi.
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Corollary L2-Regularized Cross-Entropy

The L2-regularized cross-entropy loss LCE(Z,W; Y)+λ∥W∥2F ,
isminimal if and only if ∃ ζ1, . . . , ζK ∈ Rh such that:

1. The classes collapse: ∀n ∈ [N] : zn = ζyn
2. The {ζy}y form an

origin-centered regular simplex
inscribed in the sphere, Sh−1

ρZ
of radius ρZ

3. The weights form an

origin-centered regular simplex
inscribed in the sphere of radius rW(ρZ , λ) and aligned to
the former³.

³rW (ρZ , λ) is the solution of 2λrW (e
K

K−1
ρZ rW + K− 1)− ρZ = 0
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2. Minimize (L2-regularized) CE and SC, respectively
3. Ensure that boundary conditions are fulfilled
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Experiments

Question

How good is the simplex arrangement achieved in practice?

Model / Dataset: ResNet-18 / CIFAR100

Statistics: Cosine similarities from training representations

Cosine similarity
across class means

Cosine similarity
to class means

CE

CE-fix

CE-fix [Mettes et al., NeurIPS ’19] (weights at simplex by construction)

SC

0.5 0.6 0.7 0.8 0.9 1.0

Optimal value at simplex

CIFAR100 err. [%]
Loss w aug. w/o aug.
CE 27.0 41.8

CE-fix 26.3 41.3
SC 24.9 41.5



Experiments

▶ Both losses lead to a close-to-simplex solution
▶ SC reaches this loss-optimal state more closely
▶ Results indicate close-to-simplex⇒ lower error
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achieving zero training
error no longer possible

▶ For CE, roughly linear scaling (as reported previously)
▶ For SC, we observe superlinear scaling behavior

⇒ implicit regularization when training with SC
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Summary

▶ Theory shows,

training models with CE and SC strives
for the same arrangement of representations

▶ Empirically,
models trained with CE and SC behave differently

⇒ This is caused by differing optimization dynamics

Probably, rooted in the interaction terms among
representations in the SC loss function
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OpenQuestions

▶ Is the powerful enough encoder assumption justified?
▶ How is the optimal representation arrangement affected

by a projection network?
▶ Why does SC “prevent” to easily fit to random labels?



Thank You!

Source code available here:
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