Dissecting Supervised Contrastive Learning

<u>Florian Graf[†]</u>, C. Hofer[†], M. Niethammer[‡] and R. Kwitt[†]

[†]University of Salzburg, [‡]UNC Chapel Hill

Predominantly, we <u>minimize</u> **cross-entropy**, wrt. (θ , W), i.e.,

$$(x_i, y_i), y_i = c$$

Within this regime, several avenues have been pursued.

Within this regime, several avenues have been pursued. This includes (among others):

Fixing the classifier weights

(e.g., random or, a-priori, max. spaced on the sphere)

[Hoffer et al., ICLR '18]

[Mettes et al., NeurIPS '19]

Within this regime, several avenues have been pursued. This includes (among others):

Fixing the classifier weights

(e.g., random or, a-priori, max. spaced on the sphere)

[Hoffer et al., ICLR '18]

[Mettes et al., NeurIPS '19]

 Promoting max. spaced classifier weights on the sphere (as optimization objective)

[Liu et al., NeurIPS '18]

Within this regime, several avenues have been pursued. This includes (among others):

Fixing the classifier weights

(e.g., random or, a-priori, max. spaced on the sphere)

[Hoffer et al., ICLR '18]

[Mettes et al., NeurIPS '19]

 Promoting max. spaced classifier weights on the sphere (as optimization objective)

[Liu et al., NeurIPS '18]

 Theoretically studying *neural collapse* phenomena (in the terminal stage of training)

[Papyan et al., PNAS '20]

Alternatively, [Khosla et al., NeurIPS '20], directly optimize φ_{θ} :

Alternatively, [Khosla et al., NeurIPS '20], directly optimize φ_{θ} :

Step 1

Alternatively, [Khosla et al., NeurIPS '20], directly optimize φ_{θ} :

Step 1

Alternatively, [Khosla et al., NeurIPS '20], directly optimize φ_{θ} :

Step 2

Prior work

A recent body of work considers **theoretical aspects** of contrastive learning in an

unsupervised/self-supervised regime.

Prior work

A recent body of work considers **theoretical aspects** of contrastive learning in an

unsupervised/self-supervised regime.

This includes:

 Generalization guarantees for downstream classifiers (by formalizing semantic similarity via latent classes) [Arora et al., ICML '19]

Prior work

A recent body of work considers **theoretical aspects** of contrastive learning in an

unsupervised/self-supervised regime.

This includes:

- Generalization guarantees for downstream classifiers (by formalizing semantic similarity via latent classes)
 [Arora et al., ICML '19]
- Asymptotic geometric properties of representations (by studying alignment & uniformity)

[Wang & Isola, ICML '20]

Question

Are **representations**, learned by φ_{θ}

- 1. via the cross-entropy (CE), or
- 2. via the supervised contrastive (SC)

objective, geometrically similar?

Are **representations**, learned by φ_{θ}

- 1. via the cross-entropy (CE), or
- 2. via the supervised contrastive (SC)

objective, geometrically similar?

We study this question at **optimality**, i.e., which *N*-points

$$Z_{\theta} = (\varphi_{\theta}(\mathbf{x}_1), \dots, \varphi_{\theta}(\mathbf{x}_N)) \in \mathcal{Z}^N$$

minimize the CE / SC loss?

Formally¹,

argmin $loss(\varphi_{\theta}(\mathbf{x}_1), \ldots, \varphi_{\theta}(\mathbf{x}_N); \mathbf{Y})$ θ

¹for CE, the classifier weights, *W*, need to be included as well

Formally¹,

argmin $loss(\varphi_{\theta}(x_1), \ldots, \varphi_{\theta}(x_N); Y)$ θ

¹for CE, the classifier weights, *W*, need to be included as well

Formally¹,

argmin $loss(\varphi_{\theta}(\mathbf{x}_{1}), \ldots, \varphi_{\theta}(\mathbf{x}_{N}); \mathbf{Y})$ θ

¹for CE, the classifier weights, W, need to be included as well

Formally¹,

$$\underset{\theta}{\operatorname{argmin}} \operatorname{loss}(\varphi_{\theta}(\mathbf{x}_{1}), \ldots, \varphi_{\theta}(\mathbf{x}_{N}); Y)$$

Assumption

We assume a **powerful enough**² encoder φ_{θ} .

¹for **CE**, the classifier weights, *W*, need to be included as well ²capable of yielding any geometric arrangement of $(\varphi_{\theta}(x_1), \ldots, \varphi_{\theta}(x_N)) \in \mathbb{Z}^N$ Formally¹,

$$\underset{z_1,\ldots,z_N}{\operatorname{argmin}} \operatorname{loss}(z_1,\ldots,z_N;Y)$$

Assumption

We assume a **powerful enough**² encoder φ_{θ} .

Hence, we search for configurations of N (free) points, i.e.,

$$Z = (z_1, \ldots, z_N) \in \mathcal{Z}^N$$

minimizing the CE and the SC loss, respectively.

for CE, the classifier weights, W, need to be included as well

²capable of yielding any geometric arrangement of $(\varphi_{\theta}(x_1), \ldots, \varphi_{\theta}(x_N)) \in \mathcal{Z}^N$

 \Rightarrow Contribution of a single z_i

 \Rightarrow Contribution of a single z_i

 \Rightarrow Contribution of a single z_i

$\mathcal{L}_{SC}(Z; Y)$

$$-\sum_{B \in \mathcal{B}} \sum_{i \in B} \frac{\mathbb{1}_{|B_{y_i}| > 1}}{|B_{y_i}| - 1} \sum_{j \in B_{y_i} \setminus \{\!\!\{i\}\!\!\}} \log\left(\frac{\exp(\langle z_i, z_j \rangle)}{\sum_{k \in B \setminus \{\!\!\{i\}\!\!\}} \exp(\langle z_i, z_k \rangle)}\right)$$

\Rightarrow Contribution of **all** batches of size *b*

\Rightarrow Contribution of **all** batches of size *b*

\Rightarrow Contribution of **all** batches of size *b*

\Rightarrow Contribution of **all** instances in batch

\Rightarrow Contribution of **single** instance in batch

\Rightarrow Contribution of **single** instance in batch

Question

How do the representations (z_i) arrange?

Goal: compare $\underset{z_1,...,z_N}{\operatorname{argmin}} \mathcal{L}_{SC}(Z; Y)$ vs. $\underset{z_1,...,z_N,W}{\operatorname{argmin}} \mathcal{L}_{CE}(Z, W; Y)$

Question

How do the representations (z_i) arrange?

Goal: compare $\underset{z_1,...,z_N}{\operatorname{argmin}} \mathcal{L}_{SC}(Z; Y)$ vs. $\underset{z_1,...,z_N,W}{\operatorname{argmin}} \mathcal{L}_{CE}(Z, W; Y)$

Question

How do the representations (z_i) arrange?

Goal: compare $\underset{z_1,...,z_N}{\operatorname{argmin}} \mathcal{L}_{SC}(Z; Y)$ vs. $\underset{z_1,...,z_N,W}{\operatorname{argmin}} \mathcal{L}_{CE}(Z, W; Y)$

(Regular simplex) conjecture

Classes collapse to a point

Question

How do the representations (z_i) arrange?

Goal: compare $\underset{z_1,...,z_N}{\operatorname{argmin}} \mathcal{L}_{SC}(Z; Y)$ vs. $\underset{z_1,...,z_N,W}{\operatorname{argmin}} \mathcal{L}_{CE}(Z, W; Y)$

- Classes collapse to a point
- These points are maximally separated

Question

How do the representations (z_i) arrange?

Goal: compare $\underset{z_1,...,z_N}{\operatorname{argmin}} \mathcal{L}_{SC}(Z; Y)$ vs. $\underset{z_1,...,z_N,W}{\operatorname{argmin}} \mathcal{L}_{CE}(Z, W; Y)$

- Classes collapse to a point
- These points are maximally separated

Question

How do the representations (z_i) arrange?

Goal: compare $\underset{z_1,...,z_N}{\operatorname{argmin}} \mathcal{L}_{SC}(Z; Y)$ vs. $\underset{z_1,...,z_N,W}{\operatorname{argmin}} \mathcal{L}_{CE}(Z, W; Y)$

- Classes collapse to a point
- These points are maximally separated

 $\zeta_1, \ldots, \zeta_K \in \mathbb{R}^h$ form (the vertices of) an

origin-centered regular simplex inscribed in \mathbb{S}_o^{h-1}

 $\zeta_1, \ldots, \zeta_K \in \mathbb{R}^h$ form (the vertices of) an

origin-centered regular simplex inscribed in \mathbb{S}_{a}^{h-1}

- *S1.* origin-centered: $\frac{1}{K} \sum_{i \in [K]} \zeta_i = 0$
- *S2.* sphere-inscribed: $\|\zeta_i\| = \rho$ for $i \in [K]$
- *S3.* regular: $\exists d \in \mathbb{R} : d = ||\zeta_i \zeta_j||$ for $1 \le i < j \le K$

 $\zeta_1, \ldots, \zeta_K \in \mathbb{R}^h$ form (the vertices of) an

origin-centered regular simplex inscribed in \mathbb{S}_{ρ}^{h-1}

- *S1.* origin-centered: $\frac{1}{K} \sum_{i \in [K]} \zeta_i = 0$
- *S2.* sphere-inscribed: $\|\zeta_i\| = \rho$ for $i \in [K]$
- *S3.* regular: $\exists d \in \mathbb{R} : d = ||\zeta_i \zeta_j||$ for $1 \le i < j \le K$

 $\zeta_1, \ldots, \zeta_K \in \mathbb{R}^h$ form (the vertices of) an

origin-centered regular simplex inscribed in \mathbb{S}_o^{h-1}

- *S1.* origin-centered: $\frac{1}{K} \sum_{i \in [K]} \zeta_i = 0$
- *S2.* **sphere-inscribed**: $\|\zeta_i\| = \rho$ for $i \in [K]$
- *S3.* regular: $\exists d \in \mathbb{R} : d = ||\zeta_i \zeta_j||$ for $1 \le i < j \le K$

 $\zeta_1, \ldots, \zeta_K \in \mathbb{R}^h$ form (the vertices of) an

origin-centered regular simplex inscribed in \mathbb{S}_{a}^{h-1}

- *S1.* origin-centered: $\frac{1}{K} \sum_{i \in [K]} \zeta_i = 0$
- *S2.* sphere-inscribed: $\|\zeta_i\| = \rho$ for $i \in [K]$
- *S3.* **regular**: $\exists d \in \mathbb{R} : d = ||\zeta_i \zeta_j||$ for $1 \le i < j \le K$

Bound the loss functions by a sequence of inequalities (using Jensen, Cauchy-Schwarz)

Bound the loss functions by a sequence of inequalities (using Jensen, Cauchy-Schwarz)

loss

Bound the loss functions by a sequence of inequalities (using Jensen, Cauchy-Schwarz)

 $\begin{array}{c} \text{loss} \stackrel{(*)}{\geq} \dots \\ \stackrel{(**)}{\geq} \dots \\ \stackrel{(***)}{\geq} \end{array}$

Bound the loss functions by a sequence of inequalities (using Jensen, Cauchy-Schwarz)

Bound the loss functions by a sequence of inequalities (using Jensen, Cauchy-Schwarz)

 $loss \stackrel{(*)}{\geq} \dots$ $\stackrel{(**)}{\geq} \dots$ $\stackrel{(***)}{\geq} tight lower bound$

Bound the loss functions by a sequence of inequalities (using Jensen, Cauchy-Schwarz)

Show that

necessary and sufficient equality conditions (*), (**), (* * *) $\Leftrightarrow \qquad \begin{array}{c} \text{simplex conditions} \\ (S1), (S2), (S3) \end{array}$

Loss function is not sample-wise but batch-wise

 $\mathcal{L}_{SC}(Z; Y)$

 $-\sum_{\boldsymbol{B}\in\mathcal{B}}\sum_{i\in B}\frac{\mathbb{1}_{|B_{y_i}|>1}}{|B_{y_i}|-1}\sum_{j\in B_{y_i}\setminus\{\!\!\{i\}\!\!\}}\log\left(\frac{\exp(\langle z_i,z_j\rangle)}{\sum_{k\in B\setminus\{\!\!\{i\}\!\!\}}\exp(\langle z_i,z_k\rangle)}\right)$

- Loss function is not sample-wise but batch-wise
- No common minimizer for all batch-wise contributions

 $\mathcal{L}_{SC}(Z; Y)$

 $-\sum_{\boldsymbol{B}\in\mathcal{B}}\sum_{i\in B}\frac{\mathbb{1}_{|B_{y_i}|>1}}{|B_{y_i}|-1}\sum_{j\in B_{y_i}\setminus\{\!\!\{i\}\!\!\}}\log\left(\frac{\exp(\langle z_i,z_j\rangle)}{\sum_{k\in B\setminus\{\!\!\{i\}\!\!\}}\exp(\langle z_i,z_k\rangle)}\right)$

- Loss function is not sample-wise but batch-wise
- No common minimizer for all batch-wise contributions

- Loss function is not sample-wise but batch-wise
- ▶ No common minimizer for all batch-wise contributions

- Loss function is not sample-wise but batch-wise
- ▶ No common minimizer for all batch-wise contributions

- Loss function is not sample-wise but batch-wise
- ▶ No common minimizer for all batch-wise contributions

- Loss function is not sample-wise but batch-wise
- No common minimizer for all batch-wise contributions
- > Attraction and repulsion forces depend on

all other representations in the batch!

 $\mathcal{L}_{SC}(Z; Y)$

 $-\sum_{B\in\mathcal{B}}\sum_{i\in B}\frac{\mathbb{1}_{|B_{y_i}|>1}}{|B_{y_i}|-1}\sum_{j\in B_{y_i}\setminus\{\!\!\{i\}\!\!\}}\log\left(\frac{\exp(\langle z_i,z_j\rangle)}{\sum_{k\in B\setminus\{\!\!\{j\}\!\!\}}\exp(\langle z_i,z_k\rangle)}\right)$

Theorem Supervised Contrastive Loss

Let $\rho_{\mathcal{Z}} > 0$ and $\mathcal{Z} = \mathbb{S}_{\rho_{\mathcal{Z}}}^{h-1}$. If the labels *Y* are balanced, then $\mathcal{L}_{SC}(Z; Y)$ is **minimal** if and only if there $\exists \zeta_1, \ldots, \zeta_K \in \mathbb{R}^h$ s.t.

Theorem Supervised Contrastive Loss

Let $\rho_{\mathcal{Z}} > 0$ and $\mathcal{Z} = \mathbb{S}_{\rho_{\mathcal{Z}}}^{h-1}$. If the labels *Y* are balanced, then $\mathcal{L}_{SC}(Z; Y)$ is **minimal** if and only if there $\exists \zeta_1, \ldots, \zeta_K \in \mathbb{R}^h$ s.t.

1. The classes collapse: $\forall n \in [N] : z_n = \zeta_{y_n}$

Theorem Supervised Contrastive Loss

Let $\rho_{\mathcal{Z}} > 0$ and $\mathcal{Z} = \mathbb{S}_{\rho_{\mathcal{Z}}}^{h-1}$. If the labels *Y* are balanced, then $\mathcal{L}_{SC}(Z; Y)$ is **minimal** if and only if there $\exists \zeta_1, \ldots, \zeta_K \in \mathbb{R}^h$ s.t.

- 1. The classes collapse: $\forall n \in [N] : z_n = \zeta_{y_n}$
- 2. The $\{\zeta_y\}_y$ form an

origin centered regular simplex inscribed in the sphere $\mathbb{S}_{\rho_z}^{h-1}$ of radius ρ_z .

Theory

Theorem Cross-Entropy

Let $\mathcal{Z} = \{ z \in \mathbb{R}^h : ||z|| \le \rho_{\mathcal{Z}} \}$. If labels *Y* are balanced, then

$$\mathcal{L}_{CE}(Z, W; Y) \ge \log\left(1 + (K - 1) \exp\left(-\rho_{\mathcal{Z}} \frac{\sqrt{K}}{K - 1} \|W\|_{F}\right)\right) ,$$

with equality if and only if $\exists \zeta_1, \ldots, \zeta_K \in \mathbb{R}^h$ s.t.
Theorem Cross-Entropy

Let $\mathcal{Z} = \{ z \in \mathbb{R}^h : ||z|| \le \rho_{\mathcal{Z}} \}$. If labels *Y* are balanced, then

$$\mathcal{L}_{CE}(Z, W; Y) \ge \log \left(1 + (K - 1) \exp \left(-\rho_{\mathcal{Z}} \frac{\sqrt{K}}{K - 1} \|W\|_{F} \right) \right) ,$$

with equality **if and only if** $\exists \zeta_1, \ldots, \zeta_K \in \mathbb{R}^h$ s.t.

1. The classes collapse: $\forall n \in [N] : z_n = \zeta_{y_n}$

and

2. The $\{\zeta_y\}_y$ form an *origin-centered* regular simplex inscribed in the sphere $\mathbb{S}_{\rho_z}^{h-1}$ of radius ρ_z

2. The $\{\zeta_y\}_y$ form an

origin-centered regular simplex

inscribed in the sphere $\mathbb{S}^{h-1}_{\rho_{\mathcal{Z}}}$ of radius $\rho_{\mathcal{Z}}$

3. $\exists r_{W} > 0$ s.t. the **weights** form an *origin-centered* regular simplex inscribed in the sphere $\mathbb{S}_{r_{W}}^{h-1}$ and aligned to the former.

Adding L_2 -regularization with strength λ determines the w_i .

Adding L_2 -regularization with strength λ determines the w_i .

Corollary *L*₂-*Regularized Cross-Entropy*

The *L*₂-regularized cross-entropy loss $\mathcal{L}_{CE}(Z, W; Y) + \lambda ||W||_F^2$, is **minimal** if and only if $\exists \zeta_1, \ldots, \zeta_K \in \mathbb{R}^h$ such that:

Corollary *L*₂-*Regularized Cross-Entropy*

The *L*₂-regularized cross-entropy loss $\mathcal{L}_{CE}(Z, W; Y) + \lambda ||W||_F^2$, is **minimal** if and only if $\exists \zeta_1, \ldots, \zeta_K \in \mathbb{R}^h$ such that:

1. The classes collapse: $\forall n \in [N] : z_n = \zeta_{y_n}$

Corollary *L*₂-*Regularized Cross-Entropy*

The *L*₂-regularized cross-entropy loss $\mathcal{L}_{CE}(Z, W; Y) + \lambda ||W||_F^2$, is **minimal** if and only if $\exists \zeta_1, \ldots, \zeta_K \in \mathbb{R}^h$ such that:

- 1. The classes collapse: $\forall n \in [N] : z_n = \zeta_{y_n}$
- 2. The $\{\zeta_y\}_y$ form an

origin-centered regular simplex

inscribed in the sphere, $\mathbb{S}_{\rho_{\mathcal{Z}}}^{h-1}$ of radius $\rho_{\mathcal{Z}}$

Corollary *L*₂-*Regularized Cross-Entropy*

The *L*₂-regularized cross-entropy loss $\mathcal{L}_{CE}(Z, W; Y) + \lambda ||W||_F^2$, is **minimal** if and only if $\exists \zeta_1, \ldots, \zeta_K \in \mathbb{R}^h$ such that:

- 1. The classes collapse: $\forall n \in [N] : z_n = \zeta_{y_n}$
- 2. The $\{\zeta_y\}_y$ form an

origin-centered regular simplex

inscribed in the sphere, $\mathbb{S}_{\rho_{\mathcal{Z}}}^{h-1}$ of radius $\rho_{\mathcal{Z}}$

3. The weights form an

origin-centered regular simplex

inscribed in the sphere of radius $r_{\mathcal{W}}(\rho_{\mathcal{Z}},\lambda)$ and aligned to the former³.

$${}^{3}r_{\mathcal{W}}(\rho_{\mathcal{Z}},\lambda)$$
 is the solution of $2\lambda r_{\mathcal{W}}(e^{\frac{K}{K-1}\rho_{\mathcal{Z}}r_{\mathcal{W}}}+K-1)-\rho_{\mathcal{Z}}=0$

Lets verify the theory on a toy example ...

Lets verify the theory on a toy example ...

1. Sample z_1, \ldots, z_{400} (with K = 4 classes) on the sphere \mathbb{S}^2

Lets verify the theory on a toy example ...

- 1. Sample z_1, \ldots, z_{400} (with K = 4 classes) on the sphere \mathbb{S}^2
- 2. Minimize (L₂-regularized) CE and SC, respectively

Lets verify the theory on a toy example

- 1. Sample z_1, \ldots, z_{400} (with K = 4 classes) on the sphere \mathbb{S}^2
- 2. Minimize (L₂-regularized) CE and SC, respectively
- 3. Ensure that boundary conditions are fulfilled

Question

How good is the **simplex arrangement** achieved in practice?

Question

How good is the **simplex arrangement** achieved in practice?

Model / Dataset: ResNet-18 / CIFAR100 Statistics: Cosine similarities from training representations

Question

How good is the **simplex arrangement** achieved in practice?

Model / Dataset: ResNet-18 / CIFAR100

Statistics: Cosine similarities from training representations

Question

How good is the **simplex arrangement** achieved in practice?

Model / Dataset: ResNet-18 / CIFAR100

Statistics: Cosine similarities from training representations

Question

How good is the **simplex arrangement** achieved in practice?

Model / Dataset: ResNet-18 / CIFAR100

Statistics: Cosine similarities from training representations

CE-fix [Mettes et al., NeurIPS '19] (weights at simplex by construction)

Question

How good is the **simplex arrangement** achieved in practice?

Model / Dataset: ResNet-18 / CIFAR100

Statistics: Cosine similarities from training representations

CE-fix [Mettes et al., NeurIPS '19] (weights at simplex by construction)

Question

How good is the **simplex arrangement** achieved in practice?

Model / Dataset: ResNet-18 / CIFAR100

Optimal value at **simplex**

CE-fix [Mettes et al., NeurIPS '19] (weights at simplex by construction)

- Both losses lead to a close-to-simplex solution
- SC reaches this loss-optimal state more closely
- ► Results indicate **close-to-simplex** ⇒ **lower error**

For CE, roughly linear scaling (as reported previously)

For CE, roughly linear scaling (as reported previously)

An interesting, final observation

- For CE, roughly linear scaling (as reported previously)
- ► For SC, we observe superlinear scaling behavior

An interesting, final observation

- ► For CE, roughly linear scaling (as reported previously)
- ► For SC, we observe superlinear scaling behavior

An interesting, final observation

- For CE, roughly linear scaling (as reported previously)
- For **SC**, we observe **superlinear** scaling behavior

Summary

Theory shows,

training models with **CE** and **SC** strives for the **same** arrangement of representations Theory shows,

training models with **CE** and **SC** strives for the **same** arrangement of representations

Empirically,

models trained with CE and SC behave differently
Theory shows,

training models with **CE** and **SC** strives for the **same** arrangement of representations

Empirically,

models trained with CE and SC behave differently

 \Rightarrow This is caused by **differing optimization** dynamics

Theory shows,

training models with **CE** and **SC** strives for the **same** arrangement of representations

Empirically,

models trained with CE and SC behave differently

 \Rightarrow This is caused by **differing optimization** dynamics

Probably, rooted in the **interaction terms** among representations in the **SC** loss function

Is the powerful enough encoder assumption justified?

- Is the powerful enough encoder assumption justified?
- How is the optimal representation arrangement affected by a projection network?

Is the powerful enough encoder assumption justified?

Is the powerful enough encoder assumption justified?

- Is the powerful enough encoder assumption justified?
- How is the optimal representation arrangement affected by a projection network?
- Why does **SC** "prevent" to easily fit to **random labels**?

Thank You!

Source code available here:

