CARTL: Cooperative Adversarially-Robust Transfer Learning

Dian Chen¹ Hongxin Hu² Qian Wang¹ Yinli Li¹ Cong Wang³ Chao Shen⁴ Qi Li⁵

¹Wuhan University ²University at Buffalo ³City University of Hong Kong ⁴Xi'an Jiaotong University ⁵Tsinghua University

Overview

• We reveal that there is a trade-off between accuracy and robustness in transfer learning.

• We propose a new transfer learning strategy, CARTL, for improving the accuracy-robustness trade-off of the target model.

• We demonstrate that selectively freezing the Batch Norm layers can further boost the robustness transfer.

Training Deep Neural Networks Is Tough

Network capacity

• Billions of parameters

Training data

• Extra training images except for ImageNet

Computational cost

• Thousands of core-hour

Figure from paperswithcode.com (2021.5)

Adversarial Examples

Adversarial examples are perturbated inputs that deceive DNNs into answering incorrect results.

$$\arg\max_i f_{\theta}(\mathbf{x})_i \neq \arg\max_j f_{\theta}(\mathbf{x}')_j$$

- Szegedy et al., Intriguing Properties of Neural Networks, ICLR 2014

Adversarial Training

Adversarial training is similar to natural model training, but it takes (only) adversarial examples as the training data.

$$\min_{\boldsymbol{\theta}} \mathbb{E}_{(\boldsymbol{x},\boldsymbol{y})\sim\mathcal{D}} \left[\max_{\boldsymbol{\delta}\in\mathbb{S}} \mathcal{L}(f_{\boldsymbol{\theta}}(\boldsymbol{x}+\boldsymbol{\delta}),\boldsymbol{y}) \right]$$

Madry et al., Towards Deep Learning Models Resistant to Adversarial Attacks, ICLR 2018.

Adversarial Training

Network capacity

• Adversarial robustness exhibits a strong demand on the network's capability, i.e., its depth and width.

Training data

• Adversarial training requires more training data than natural training.

Computational cost

• The training cost is *N*-times higher than natural training.

"Adversarial training increases the burden of model training."

- Xie et al., Intriguing Properties of Adversarial Training at Scale, ICLR 2020.
- Schmidt et al., Adversarially Robust Generalization Requires More Data, NeurIPS 2018.
- Shafahi et al., Adversarial Training for Free!, NeurIPS 2019.

Transfer Learning

 $TL(\boldsymbol{\theta}_{*},$

loss $\overline{\theta} =$

Utilizing the knowledge obtained from the source domain to solve target domain tasks.

E 1

$$\begin{split} \min_{\overline{\theta}} \mathbb{E}_{(x,y)\sim\mathcal{D}} \left[\mathcal{L} \left(f_{\overline{\theta}}^{(L-k+1..L)} \left(f^{(L-k)}(x) \right), y \right) \right] \\ \text{TL}(\theta_*, \mathcal{D}, k): \\ \theta \leftarrow \theta_* \ // \text{ copy pre-trained weights} \\ \overline{\theta} \coloneqq \{\theta_{L-k+1}, \dots, \theta_L \} \ // \text{ fine-tune last } k \text{ layers} \\ \text{repeat} \\ \left| \begin{array}{c} (x,y) \leftarrow \mathcal{D} \ // \min \text{-batch} \\ \log s = \mathcal{L} \left(f_{\overline{\theta}} \left(f^{(L-k)}(x) \right), y \right) \\ \overline{\theta} = \overline{\theta} + \eta \cdot \nabla_{\overline{\theta}} \log s \\ \text{until convergence} \\ \end{split}$$

$$Target \\ \text{Model} \\ \text{Target} \\ \text{model} \\$$

- Yosinski et al., How Transferable Are Features in Deep Neural Networks?, NeurIPS 2014.

Shafahi's Work

- The robustness of a hardened model is mainly due to its robust deep feature.
- Robustness does transfer when merely retraining the **last** fully-connected layer of a robust model.
- The accuracy of the target model **is poor**.

- Shafahi et al., Adversarially Robust Transfer Learning, ICLR 2020.

Shafahi's Work

• End-to-end transfer learning with a distillation term, called LwF

- A trade-off between the accuracy and robustness of the target model:
 - Reduce λ_d for improving generalization, i.e., accuracy on the target domain.
 - Increase λ_d for obtaining better robustness transfer.
- Shafahi et al., Adversarially Robust Transfer Learning, ICLR 2020.

Problem Exploration

- How the number of fine-tuned layers affects the target model's robustness and accuracy.
- Widely-adopted architecture: wide residual network (WRN)
- Fine-tune the pre-trained robust model in the unit of the block on the target domain.

- Zagoruyko et al., Wide Residual Networks, arXiv, 2016.

Problem Exploration

- Merely fine-tuning the last layer may not be sufficient.
- Insufficient accuracy leads to lower robustness.
- Accuracy increases together with the number of the fine-tuned layers.
- There is **a trade-off** between robustness and accuracy.

Can the target model obtain high accuracy while inheriting more robustness from the source model?

CARTL

- A cooperative approach
 - Feature distance minimization (FDM): adjusted adversarial training for the source model
 - Non-expansive fine-tuning (NEFT): constrained fine-tuning for model transfer
- Fine-tune the last k layers and freeze the first L k layers

Feature Distance Minimization

The first L - k layers frozen during transfer learning are taken as a feature extractor.

- Two inputs extracted similar features tend to be classified into an identical label.
- Reduce the distance between the features of adv. (x') and nat. (x) examples.

$$\mathcal{L}_{AT} + \frac{\lambda}{\sqrt{d}} \cdot \| f^{(L-k)}(\boldsymbol{x}) - f^{(L-k)}(\boldsymbol{x}') \|_2$$

- Wang et al., With Great Training Comes Great Vulnerability: Practical Attacks against Transfer Learning, USENIX Security 2018

Non-expansive Fine-tuning

- We call a function f Lipchitz continuous if $\| f(x) - f(x') \|_2 \le \Lambda \cdot \| x - x' \|_2$
- Lipchitz constant for DNN $f(\cdot; \boldsymbol{\theta}) \coloneqq f_{\boldsymbol{\theta}_L}^L \circ f_{\boldsymbol{\theta}_{L-1}}^{L-1} \circ \cdots \circ f_{\boldsymbol{\theta}_1}^1(\cdot)$ $\| f(\boldsymbol{x}) - f(\boldsymbol{x}') \|_2 \le \Lambda_L \cdot \Lambda_{L-1} \cdots \Lambda_1 \| \boldsymbol{x} - \boldsymbol{x}' \|_2$
- A general form of the deep neural layer f^{l} :

$$f^l = \boldsymbol{W}^l \cdot \boldsymbol{x} + \boldsymbol{b}^l$$

Non-expansive Fine-tuning

- The remaining dissimilarity of features may still result in model misclassification.
- Non-expansive fine-tuning: mitigate the error caused by the dissimilarity of features.

$$\boldsymbol{W}_*^l \coloneqq \boldsymbol{\beta} \cdot \frac{\boldsymbol{W}^l}{\sigma(\boldsymbol{W}^l)}$$

• β is a hyper-parameter for further scaling down the Lipchitz constant

Miyato et al., Spectral Normalization for Generative Adversarial Networks, ICLR 2018.

Rethinking Fine-tuning Batch Norm Layer

• An essential component for DNN: internal covariate shift, model training acceleration

$$BN(\mathbf{x}) \coloneqq \mathbf{W} \cdot \frac{\mathbf{x} - mean(\mathbf{x})}{\sqrt{var(\mathbf{x}) + \varepsilon}} + \mathbf{b}$$
$$\boldsymbol{\mu} \coloneqq m \cdot \boldsymbol{\mu} + (1 - m) \cdot mean(\mathbf{x})$$
$$\boldsymbol{\sigma} \coloneqq m \cdot \boldsymbol{\sigma} + (1 - m) \cdot \sqrt{var(\mathbf{x})}$$

- Parameters:
 - Statistic parameters μ and σ : updated with a momentum (*m*).
 - Affine parameters W and b: updated through back propagation.
- Four cases:
 - Update/reuse μ and σ in the feature extractor
 - Fine-tune/freeze W and b in the sub-model

Rethinking Fine-tuning Batch Norm Layer

		<i>W</i> , <i>b</i>		μ, σ, W, b	
		Acc (%)	Rob (%)	Acc (%)	Rob (%)
	-	91.17	14.36	90.86	14.89
$CIFAR-100 \rightarrow CIFAR-10 (8)$	W, b	90.70	17.41	90.84	18.54
	-	93.02	30.22	89.29	32.22
CIFAR-10 \rightarrow GTSRB (6)	W, b	92.13	32.22	88.94	34.53
	-	95.29	3.88	95.24	9.22
$CIFAR-10 \rightarrow SVHN (6)$	W, b	95.16	4.90	94.86	11.52
	-	93.47	4.71	92.92	12.45
$CIFAR-10 \to SVHN\ (5)$	W, b	93.41	5.64	92.10	14.16

- Transferred robustness can be boosted if freezing affine parameters of the sub-model.
- Freezing statistics of the feature extractor plays a crucial role in robustness transfer.
- Reuse source domain statistics may cast negative impacts on the accuracy

- LwF improves the robustness but aggressively harms the accuracy and vice versa.
- Vanilla and CARTL maintain higher robustness in the case of an equivalent level of accuracy.
- CARTL further improves the accuracy-robustness trade-off compared with Vanilla.

- CARTL exhibits similar trends to Vanilla, achieving higher robustness at Case-6.
- A smaller λ helps robustness transfer but slightly results in lower accuracy.
- Reducing Lipschitz constants significantly improves the target models' robustness

		NEFT $\beta = 1.0$		NEFT $\beta = 0.6$		NEFT $\beta = 0.4$	
		Acc (%)	Rob (%)	Acc (%)	Rob (%)	Acc (%)	Rob (%)
Case-4	$\lambda = 0.01$	86.09	25.73	86.08	27.17	85.64	28.40
	$\lambda = 0.005$	85.41	25.75	85.47	27.14	85.51	28.47
Case-6	$\lambda = 0.01$	87.78	25.58	87.92	27.27	87.96	29.60
	$\lambda = 0.005$	87.66	25.97	88.07	27.64	87.79	30.94
Case-8	$\lambda = 0.01$	91.85	16.36	91.63	19.22	91.55	27.47
	$\lambda = 0.005$	91.71	17.62	91.10	21.60	91.30	29.34

 $CIFAR-100 \rightarrow CIFAR-10$

- Fine-tuning the target model with NEFT significantly increases its robustness.
- FDM further improves the robustness except for Case-8.
- By using FDM, the target model's accuracy slightly rises in all cases.

Method		Case-4		Cas	se-6	Case-8		
Source	Transfer	Acc (%)	Rob (%)	Acc (%)	Rob (%)	Acc (%)	Rob (%)	
AT	TL	83.22	25.23	86.92	25.38	90.82	18.54	
AT	NEFT	83.72	26.29	86.87	27.95	90.92	29.97	
AT + FDM	NEFT	85.51	28.47	87.79	30.94	91.30	29.34	

 $CIFAR-100 \rightarrow CIFAR-10$

- CARTL outperforms both LwF and Vanilla when the data size is small.
- Target models fine-tuned with CARTL inherit superior robustness from the source model in all cases.

Source	Target	Arch.	LwF		Vanilla		CARTL	
			Acc (%)	Rob (%)	Acc (%)	Rob (%)	Acc (%)	Rob (%)
CIFAR-100	SVHN	WRN 34-10	85.90	6.67	92.83	17.64	93.96	22.21
CIFAR-100	GTSRB	WRN 34-10	70.34	15.85	80.40	30.25	83.07	47.34
CIFAR-10	SVHN	WRN 28-4	94.32	4.68	94.86	11.52	94.76	21.65
GTSRB	SVHN	WRN 28-4	81.80	1.08	93.91	6.08	94.07	15.26

Conclusion

- We conduct detailed experiments and reveal that there is a trade-off between accuracy and robustness during transfer learning.
- We propose CARTL, consisted of FDM and NEFT, for improving the accuracy-robustness trade-off of the target model.
- We demonstrate that freezing affine parameters of Batch Norm layers can further boost the robustness transfer, and Batch Norm layers' statistics play a crucial role in robustness transfer.

Thanks! Any questions?

