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Overview

« We reveal that there is a trade-off between accuracy and robustness in
transfer learning.

» We propose a new transfer learning strategy, CARTL, for improving the
accuracy-robustness trade-off of the target model.

 We demonstrate that selectively freezing the Batch Norm layers can
further boost the robustness transfer.




Training Deep Neural Networks Is Tough
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Adversarial Examples

Adversarial examples are perturbated inputs that deceive DNNs into answering
incorrect results.
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- Szegedy et al,, Intriguing Properties of Neural Networks, ICLR 2014




Adversarial Training

Adversarial training is similar to natural model training, but it takes (only)
adversarial examples as the training data.
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- Madry et al., Towards Deep Learning Models Resistant to Adversarial Attacks, ICLR 2018.




Adversarial Training

Network capacity

» Adversarial robustness exhibits a strong demand on the network’s capability, i.e.,
its depth and width.

Training data
» Adversarial training requires more training data than natural training.

Computational cost
* The training cost is N-times higher than natural training.

“Adversarial training increases the burden of model training.”

Xie et al., Intriguing Properties of Adversarial Training at Scale, ICLR 2020.
Schmidt et al., Adversarially Robust Generalization Requires More Data, NeurlPS 2018.
Shafahi et al., Adversarial Training for Free!, NeurlPS 2019. 6



Transfer Learning

Utilizing the knowledge obtained from the source domain to solve target domain
tasks.
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- Yosinski et al., How Transferable Are Features in Deep Neural Networks?, NeurlPS 2014.




Shafahi’s Work

» The robustness of a hardened model is mainly due to its robust deep feature.

» Robustness does transfer when merely retraining the last fully-connected layer
of a robust model.

» The accuracy of the target model is poor.
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- Shafahi et al., Adversarially Robust Transfer Learning, ICLR 2020. 8
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Shafahi’s Work

» End-to-end transfer learning with a distillation term, called LwF
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» A trade-off between the accuracy and robustness of the target model:

- Reduce A, for improving generalization, i.e., accuracy on the target domain.
- Increase 1, for obtaining better robustness transfer.

- Shafahi et al., Adversarially Robust Transfer Learning, ICLR 2020.




Problem Exploration

* How the number of fine-tuned layers affects the target model’s robustness and
accuracy.

» Widely-adopted architecture: wide residual network (WRN)

* Fine-tune the pre-trained robust model in the unit of the block on the target

domain.
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- Zagoruyko et al., Wide Residual Networks, arXiv, 2016. 10

Figure from (Shafahi et al., 2020)




Problem Exploration
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Merely fine-tuning the last layer may not be sufficient.
Insufficient accuracy leads to lower robustness.
Accuracy increases together with the number of the fine-tuned layers.

There is a trade-off between robustness and accuracy.
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1

Can the target model obtain high accuracy
while inheriting more robustness from the source model ?

12




CARTL

* A cooperative approach
- Feature distance minimization (FDM): adjusted adversarial training for the source model
- Non-expansive fine-tuning (NEFT): constrained fine-tuning for model transfer

* Fine-tune the last k layers and freeze the first L — k layers
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Feature Distance Minimization

The first L — k layers frozen during transfer learning are taken as a feature extractor.
» Two inputs extracted similar features tend to be classified into an identical label.

» Reduce the distance between the features of adv. (x') and nat. (x) examples.
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- Wang et al,, With Great Training Comes Great Vulnerability: Practical Attacks against Transfer Learning, USENIX Security 2018
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Non-expansive Fine-tuning

» We call a function f Lipchitz continuous if
I fC)—fD) M= Allx—x" I,

Lipchitz constant for DNN f(+;0) = fg, o fg. > oo fg ()
HfC) —fD) < Ap-Apq A T x—x" I,

« A general form of the deep neural layer f*
fl=w!-x+ b

15



Non-expansive Fine-tuning

« The remaining dissimilarity of features may still result in model
misclassification.

* Non-expansive fine-tuning: mitigate the error caused by the
dissimilarity of features.

Wl

wt=p. (WD

* B is a hyper-parameter for further scaling down the Lipchitz constant

- Miyato et al., Spectral Normalization for Generative Adversarial Networks, ICLR 2018. 16



Rethinking Fine-tuning Batch Norm Layer

» An essential component for DNN: internal covariate shift, model training

acceleration
x — mean(x)

Jvar(x) + ¢

u=m-u+ (1 —m)- mean(x)
oc=m-0+ (1—-m)-var(x)
* Parameters:

- Statistic parameters u and o: updated with a momentum (m).
- Affine parameters W and b: updated through back propagation.

I Feature extractor I Sub-model

BN(x) =W

* Four cases:
- Update/reuse u and o in the feature extractor
- Fine-tune/freeze W and b in the sub-model




Rethinking Fine-tuning Batch Norm Layer

W,b wo,W,b
Acc (%) Rob (%) Acc (%) Rob (%)

- 91.17 14.36 90.86 14.89

CIFAR-100 ~ CIFAR-10 (8) W,b 90.70 17.41 90.84 18.54
- 93.02 30.22 89.29 32.22

CIFAR-10 — GTSRB (6) W,b 92.13 32.22 88.94 34.53

- 95.29 3.88 95.24 9.22

CIFAR-10 — SVHN (6) W,b 95.16 4.90 94.86 11.52

- 93.47 471 92.92 12.45

CIFAR-10 = SVHAN (5) W,b 93.41 5.64 92.10 14.16

« Transferred robustness can be boosted if freezing affine parameters of the sub-model.
» Freezing statistics of the feature extractor plays a crucial role in robustness transfer.

* Reuse source domain statistics may cast negative impacts on the accuracy .



Evaluations

* LwF improves the robustness but aggressively harms the accuracy and vice versa.
« Vanilla and CARTL maintain higher robustness in the case of an equivalent level of accuracy.

» CARTL further improves the accuracy-robustness trade-off compared with Vanilla.

——CARTL -®—-Vanilla —&—LwF
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Evaluations

» CARTL exhibits similar trends to Vanilla, achieving higher robustness at Case-6.
* A smaller A helps robustness transfer but slightly results in lower accuracy.

* Reducing Lipschitz constants significantly improves the target models’ robustness

NEFT 8 = 1.0 NEFT 8 = 0.6 NEFT 8 = 0.4
Acc(%) Rob(%) Acc(%) Rob(%) Acc(%) Rob (%)
A=001 86.09 2573 86.08 27.17 85.64 28.40
et = 0005 85.41 25.75 85.47 27.14 85.51 2847
A=001 87.78 25.58 87.92 27.27 87.96 29.60
et 0005 87.66 2597 88.07 27.64 87.79 30.94
A =001 91.85 16.36 91.63 19.22 91.55 27.47
Case-8
A= 0.005 91.71 17.62 91.10 21.60 91.30 29.34
CIFAR-100 — CIFAR-10 20



Evaluations

Fine-tuning the target model with NEFT significantly increases its robustness.
FDM further improves the robustness except for Case-8.

By using FDM, the target model’s accuracy slightly rises in all cases.

Method Case-4 Case-6 Case-8
Source Transfer Acc (%) Rob (%) Acc (%) Rob (%) Acc (%) Rob (%)
AT TL 83.22 25.23 86.92 25.38 90.82 18.54
AT NEFT 83.72 26.29 86.87 27.95 90.92 29.97
AT + FDM NEFT 85.51 28.47 87.79 30.94 91.30 29.34

CIFAR-100 — CIFAR-10
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Evaluations

80

» CARTL outperforms both LwF and 100
Vanilla when the data size is small.
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CARTL inherit superior robustness 0% 0% 10% 50%  20%  10%
from the source model in all cases. B CARTL ®Vanilla ®LwF mCARTL ®Vanilla ®LwF
LwF Vanilla CARTL
Source Target Arch.
Acc (%) Rob (%) Acc (%) Rob (%) Acc (%) Rob (%)
CIFAR-100 SVHN WRN 34-10 85.90 6.67 92.83 17.64 93.96 22.21
CIFAR-100 GTSRB WRN 34-10 70.34 15.85 80.40 30.25 83.07 47.34
CIFAR-10 SVHN WRN 28-4 94.32 4.68 94.86 11.52 94.76 21.65
GTSRB SVHN WRN 28-4 81.80 1.08 93.91 6.08 94.07 15.26
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Conclusion

« We conduct detailed experiments and reveal that there is a trade-off
between accuracy and robustness during transfer learning.

* We propose CARTL, consisted of FDM and NEFT, for improving the
accuracy-robustness trade-off of the target model.

« We demonstrate that freezing affine parameters of Batch Norm layers
can further boost the robustness transfer, and Batch Norm layers’
statistics play a crucial role in robustness transfer.

23



Thanks!

Any questions?

ﬁ glanwang@whu.edu.cn
) https;//github.com/NISP-official/CARTL
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