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Overview

• We reveal that there is a trade-off between accuracy and robustness in

transfer learning.

• We propose a new transfer learning strategy, CARTL, for improving the

accuracy-robustness trade-off of the target model.

• We demonstrate that selectively freezing the Batch Norm layers can

further boost the robustness transfer.
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Training Deep Neural Networks Is Tough

 
 
 
  
  
 
 
 
 
 
 
 

          

       

      

            

           

                     

                                    

                                   

                    

  

  

  

  

  

  

   

Figure from paperswithcode.com (2021.5)

Training data

• Extra training images except for ImageNet

Computational cost

• Thousands of core-hour

- Zhai et al., Scaling Vision Transformers, arXiv, 2021.

Network capacity

• Billions of parameters
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Adversarial Examples

𝒙 𝒙′

Golf ball (33.74%) Sleeping bag (98.12%)

𝜹
𝑠. 𝑡. ∥ 𝜹 ∥𝑝≤ 𝜖, 𝑝 = 0, 2,∞

Adversarial examples are perturbated inputs that deceive DNNs into answering

incorrect results.

argmax
𝑖

𝑓𝜽 𝒙 𝑖 ≠ argmax
𝑗

𝑓𝜽 𝒙′ 𝑗

- Szegedy et al., Intriguing Properties of Neural Networks, ICLR 2014
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Adversarial Training

Adversarial training is similar to natural model training, but it takes (only) 

adversarial examples as the training data. 

Natural training Adversarial training

- Madry et al., Towards Deep Learning Models Resistant to Adversarial Attacks, ICLR 2018.

min
𝜽

𝔼 𝒙,𝑦 ∼𝒟 max
𝜹∈𝕊

ℒ 𝑓𝜽 𝒙 + 𝛅 , 𝑦

Figure from (Madry et al., 2018)

𝐴𝑇 𝜽,𝒟, 𝜖, 𝛼 :

repeat

(𝒙, 𝑦) ← 𝒟 // mini-batch

𝜹 ← 𝑟𝑎𝑛𝑑_𝑖𝑛𝑖𝑡
for 𝑖 in 1,… ,𝑁
𝑙𝑜𝑠𝑠 = ℒ 𝑓𝜽 𝒙 + 𝛅 , 𝑦
𝜹 = Π𝜖 𝜹 + 𝛼 ⋅ ∇𝜹𝑙𝑜𝑠𝑠

end for

𝜽 = 𝜽 + 𝜂 ⋅ ∇𝜽ℒ 𝑓𝜽 𝒙 + 𝛅 , 𝑦
until 𝑐𝑜𝑛𝑣𝑒𝑟𝑔𝑒𝑛𝑐𝑒
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Adversarial Training

Network capacity

• Adversarial robustness exhibits a strong demand on the network’s capability, i.e.,

its depth and width.

- Xie et al., Intriguing Properties of Adversarial Training at Scale, ICLR 2020.

- Schmidt et al., Adversarially Robust Generalization Requires More Data, NeurIPS 2018.

- Shafahi et al., Adversarial Training for Free!, NeurIPS 2019. 

Training data

• Adversarial training requires more training data than natural training.

Computational cost

• The training cost is 𝑁-times higher than natural training.

“Adversarial training increases the burden of model training.”
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Transfer Learning

Source

Model

Target

Model

Pre-trained weights

Fine-tuned weights

Original architecture

Adjusted architecture

𝐿 − 𝑘
𝑘

Utilizing the knowledge obtained from the source domain to solve target domain

tasks.

min
ഥ𝜽

𝔼 𝑥,𝑦 ∼𝒟 ℒ 𝑓ഥ𝜽
𝐿−𝑘+1..𝐿

𝑓 𝐿−𝑘 (𝒙) , 𝑦

𝑇𝐿 𝜽∗, 𝒟, 𝑘 :

𝜽 ← 𝜽∗ // copy pre-trained weights
ഥ𝜽 ≔ 𝜽𝐿−𝑘+1, … , 𝜽𝐿 // fine-tune last 𝑘 layers

repeat

(𝒙, 𝑦) ← 𝒟 // mini-batch

𝑙𝑜𝑠𝑠 = ℒ 𝑓ഥ𝜽 𝑓 𝐿−𝑘 (𝑥) , 𝑦
ഥ𝜽 = ഥ𝜽 + 𝜂 ⋅ ∇ഥ𝜽𝑙𝑜𝑠𝑠

until 𝑐𝑜𝑛𝑣𝑒𝑟𝑔𝑒𝑛𝑐𝑒

- Yosinski et al., How Transferable Are Features in Deep Neural Networks?, NeurIPS 2014.
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Shafahi’s Work

RetrainFrozen

• The robustness of a hardened model is mainly due to its robust deep feature.

- Shafahi et al., Adversarially Robust Transfer Learning, ICLR 2020.

• Robustness does transfer when merely retraining the last fully-connected layer

of a robust model.

• The accuracy of the target model is poor.
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Shafahi’s Work

- Shafahi et al., Adversarially Robust Transfer Learning, ICLR 2020.

• A trade-off between the accuracy and robustness of the target model:

min
𝛉

𝔼 𝒙,𝑦 ∼𝒟 ℒ 𝑓 𝒙; 𝜽 , 𝑦 + 𝜆𝑑 ⋅∥ 𝑓
𝐿−1 𝒙; 𝜽 − 𝑓 𝐿−1 𝒙; 𝜽∗ ∥2

• End-to-end transfer learning with a distillation term, called LwF

- Reduce 𝜆𝑑 for improving generalization, i.e., accuracy on the target domain.

- Increase 𝜆𝑑 for obtaining better robustness transfer.
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Problem Exploration 

𝐶𝑜𝑛𝑣 3 × 3, 𝐶𝑁

𝐶𝑜𝑛𝑣 3 × 3, 𝐶𝑁

𝒙𝑙

𝒙𝑙+1

𝑅𝑒𝑠𝐵𝑙𝑜𝑐𝑘(𝐶𝑁)

- Zagoruyko et al., Wide Residual Networks, arXiv, 2016.

• Widely-adopted architecture: wide residual network (WRN)

Figure from (Shafahi et al., 2020)

• Fine-tune the pre-trained robust model in the unit of the block on the target

domain.

#17 #16 #15 #14 #13 #12 #11 #10 #9 #8 #7 #6 #5 #4 #3 #2 #1

𝑘 = 5

WRN 34-10

• How the number of fine-tuned layers affects the target model’s robustness and

accuracy.
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Problem Exploration 

• Merely fine-tuning the last layer may not be sufficient.

• Insufficient accuracy leads to lower robustness.

• Accuracy increases together with the number of the fine-tuned layers.

• There is a trade-off between robustness and accuracy.



“
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Can the target model obtain high accuracy 

while inheriting more robustness from the source model？
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CARTL

• A cooperative approach

- Feature distance minimization (FDM): adjusted adversarial training for the source model

- Non-expansive fine-tuning (NEFT): constrained fine-tuning for model transfer

Nat.

Adv.

𝒙′

𝒙
AT Loss

Feature

Distance

𝑓 𝐿−𝑘 𝒙′

Source Model

Optimizer

∇𝜽
Source

Domain

Total Loss

𝑓 𝐿−𝑘 𝒙

Nat.

𝒙
CE Loss

Spectrum

Normalization

Target Model

Optimizer

∇ഥ𝜽

ഥ𝜽 ≔ 𝜽𝐿−𝑘+1 , … , 𝜽𝐿

Target

Domain

𝜎 ഥ𝜽

Total Loss

• Fine-tune the last 𝑘 layers and freeze the first 𝐿 − 𝑘 layers
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Feature Distance Minimization

FDM

𝑓 𝐿−𝑘 ⋅

Nat.

Adv.

𝑓 𝐿−𝑘 𝒙′

𝑓 𝐿−𝑘 𝒙

𝒙

𝒙′

Nat.

Adv.

𝒙

𝒙′
𝑓 𝐿−𝑘 ⋅

𝑓 𝐿−𝑘 𝒙′

𝑓 𝐿−𝑘 𝒙

Adv. Nat.

The first 𝐿 − 𝑘 layers frozen during transfer learning are taken as a feature extractor.

• Two inputs extracted similar features tend to be classified into an identical label.

ℒ𝐴𝑇 +
𝜆

𝑑
⋅∥ 𝑓 𝐿−𝑘 𝒙 − 𝑓 𝐿−𝑘 𝒙′ ∥2

• Reduce the distance between the features of adv. (𝒙′) and nat. (𝒙) examples.

- Wang et al., With Great Training Comes Great Vulnerability: Practical Attacks against Transfer Learning, USENIX Security 2018
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Non-expansive Fine-tuning

• We call a function 𝑓 Lipchitz continuous if 

∥ 𝑓 𝑥 − 𝑓 𝑥′ ∥2≤ Λ ⋅∥ 𝑥 − 𝑥′ ∥2

• Lipchitz constant for DNN 𝑓 ⋅; 𝜽 ≔ 𝑓𝜽𝐿
𝐿 ∘ 𝑓𝜽𝐿−1

𝐿−1 ∘ ⋯ ∘ 𝑓𝜽1
1 ⋅

∥ 𝑓 𝒙 − 𝑓 𝒙′ ∥2≤ Λ𝐿 ⋅ Λ𝐿−1⋯Λ1 ∥ 𝒙 − 𝒙′ ∥2

• A general form of the deep neural layer 𝑓𝑙 :

𝑓𝑙 = 𝑾𝑙 ⋅ 𝒙 + 𝒃𝑙
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Non-expansive Fine-tuning

• Non-expansive fine-tuning: mitigate the error caused by  the 

dissimilarity of features.

𝑾∗
𝑙 ≔ 𝛽 ⋅

𝑾𝒍

𝜎 𝑾𝑙

• 𝛽 is a hyper-parameter for further scaling down the Lipchitz constant

• The remaining dissimilarity of features may still result in model 

misclassification.

- Miyato et al., Spectral Normalization for Generative Adversarial Networks, ICLR 2018.
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Rethinking Fine-tuning Batch Norm Layer

• An essential component for DNN: internal covariate shift, model training 

acceleration

𝐵𝑁 𝒙 ≔ 𝑾 ⋅
𝒙 −𝑚𝑒𝑎𝑛 𝒙

𝑣𝑎𝑟 𝒙 + 𝜀
+ 𝒃

𝝁 ≔ 𝑚 ⋅ 𝝁 + 1 −𝑚 ⋅ 𝑚𝑒𝑎𝑛 𝒙

𝝈 ≔ 𝑚 ⋅ 𝝈 + 1 −𝑚 ⋅ 𝑣𝑎𝑟 𝒙

• Parameters:

- Statistic parameters 𝝁 and 𝝈: updated with a momentum (𝑚). 

- Affine parameters 𝑾 and 𝒃: updated through back propagation.

• Four cases:

- Update/reuse 𝝁 and 𝝈 in the feature extractor

- Fine-tune/freeze 𝑾 and 𝒃 in the sub-model

Sub-modelFeature extractor

𝑘
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Rethinking Fine-tuning Batch Norm Layer

• Transferred robustness can be boosted if freezing affine parameters of the sub-model.

• Freezing statistics of the feature extractor plays a crucial role in robustness transfer. 

• Reuse source domain statistics may cast negative impacts on the accuracy

𝑾,𝒃 𝝁, 𝝈,𝑾, 𝒃

Acc (%) Rob (%) Acc (%) Rob (%)

CIFAR-100 → CIFAR-10 (8)
- 91.17 14.36 90.86 14.89

𝑾,𝒃 90.70 17.41 90.84 18.54

CIFAR-10 → GTSRB (6)
- 93.02 30.22 89.29 32.22

𝑾,𝒃 92.13 32.22 88.94 34.53

CIFAR-10 → SVHN (6)
- 95.29 3.88 95.24 9.22

𝑾,𝒃 95.16 4.90 94.86 11.52

CIFAR-10 → SVHN (5)
- 93.47 4.71 92.92 12.45

𝑾,𝒃 93.41 5.64 92.10 14.16
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Evaluations

• LwF improves the robustness but aggressively harms the accuracy and vice versa.

• CARTL further improves the accuracy-robustness trade-off compared with Vanilla.

• Vanilla and CARTL maintain higher robustness in the case of an equivalent level of accuracy.
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Evaluations

NEFT 𝛽 = 1.0 NEFT 𝛽 = 0.6 NEFT 𝛽 = 0.4

Acc (%) Rob (%) Acc (%) Rob (%) Acc (%) Rob (%)

Case-4
λ = 0.01 86.09 25.73 86.08 27.17 85.64 28.40

λ = 0.005 85.41 25.75 85.47 27.14 85.51 28.47

Case-6
λ = 0.01 87.78 25.58 87.92 27.27 87.96 29.60

λ = 0.005 87.66 25.97 88.07 27.64 87.79 30.94

Case-8
λ = 0.01 91.85 16.36 91.63 19.22 91.55 27.47

λ = 0.005 91.71 17.62 91.10 21.60 91.30 29.34

• CARTL exhibits similar trends to Vanilla, achieving higher robustness at Case-6.

• A smaller λ helps robustness transfer but slightly results in lower accuracy.

• Reducing Lipschitz constants significantly improves the target models’ robustness

CIFAR-100 → CIFAR-10
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Evaluations

Method Case-4 Case-6 Case-8

Source Transfer Acc (%) Rob (%) Acc (%) Rob (%) Acc (%) Rob (%)

AT TL 83.22 25.23 86.92 25.38 90.82 18.54

AT NEFT 83.72 26.29 86.87 27.95 90.92 29.97

AT + FDM NEFT 85.51 28.47 87.79 30.94 91.30 29.34

• Fine-tuning the target model with NEFT significantly increases its robustness.

• FDM further improves the robustness except for Case-8.

• By using FDM, the target model’s accuracy slightly rises in all cases.

CIFAR-100 → CIFAR-10
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Evaluations

Source Target Arch.
LwF Vanilla CARTL

Acc (%) Rob (%) Acc (%) Rob (%) Acc (%) Rob (%)

CIFAR-100 SVHN WRN 34-10 85.90 6.67 92.83 17.64 93.96 22.21

CIFAR-100 GTSRB WRN 34-10 70.34 15.85 80.40 30.25 83.07 47.34

CIFAR-10 SVHN WRN 28-4 94.32 4.68 94.86 11.52 94.76 21.65

GTSRB SVHN WRN 28-4 81.80 1.08 93.91 6.08 94.07 15.26

• CARTL outperforms both LwF and 

Vanilla when the data size is small.

• Target models fine-tuned with 

CARTL inherit superior robustness 

from the source model in all cases.
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Conclusion

• We conduct detailed experiments and reveal that there is a trade-off

between accuracy and robustness during transfer learning.

• We propose CARTL, consisted of FDM and NEFT, for improving the

accuracy-robustness trade-off of the target model.

• We demonstrate that freezing affine parameters of Batch Norm layers

can further boost the robustness transfer, and Batch Norm layers’

statistics play a crucial role in robustness transfer.



Thanks!
Any questions?
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https://github.com/NISP-official/CARTL

qianwang@whu.edu.cn


