
Hierchical VAEs Know What They Don’t Know

Jakob D. Havtorn1 2, Søren Hauberg1, Jes Frellsen1, Lars Maaløe1 2

1Department of Applied Mathematics and Computer Science, Technical University of Denmark
2Corti AI, Copenhagen



Out-of-distribution detection
Defining OOD detection

Out-of-distribution (OOD) detection is about
enabling models to distinguish the training
data distribution p(x) from any other
distribution p̃(x).

We are concerned with doing this on a
per-datapoint basis, i.e. answering the
question:

"Was x sampled from p(x) or not?"
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Out-of-distribution detection
Problem and Contributions

• Deep generative models often fail at OOD detection task when using their likelihood estimate as the
score function [6] by, perhaps surprisingly, assigning higher likelihoods to the OOD data.
• Contributions:

• We present a fast and fully unsupervised method for OOD detection competitive with the
state-of-the-art
• We provide evidence that out-of-distribution detection fails due to learned low-level features
that generalize across datasets.
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Out-of-distribution detection
In distribution?
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Out-of-distribution detection
Out of distribution?
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Models
Hierarchical VAE

We choose the hierarchical VAE as our model [2, 3].

pθ(x) =
∫
pθ(x, z)dz =

∫
pθ(x|z)pθ(z)dz

Specifically we use
1 a three-layered hierarchical VAE with bottom-up inference and
deterministic skip-connections for both inference and generation.

Generative model: pθ(x|z) = pθ(x|z1)pθ(z1|z2)p(z3),
Inference model: qφ(z|x) = qφ(z1|x)qφ(z2|z1)qφ(z3|z2).

2 a ten-layered layered Bidirectional-Inference Variational Autoencoder
(BIVA) [5]. x
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The Problem
What is wrong with the ELBO for OOD detection?

We can split the ELBO into two terms

L(x; θ, φ) = Eqφ(z|x)

[
log pθ(x, z)

qφ(z|x)

]
= Eqφ(z|x)[log pθ(x|z)]︸ ︷︷ ︸

reconstruction likelihood

−DKL(qφ(z|x)||p(z))︸ ︷︷ ︸
regularization penalty

. (1)

The first term is high if the data is well-explained by z.

The second term we can rewrite as,

DKL(qφ(z|x)||p(z)) = Eqφ(z|x)
[ ∑L−1

i=1 log pθ(zi|zi+1)
qφ(zi|zi−1) + log pθ(zL)

qφ(zL|zL−1)

]
. (2)

The absolute log-ratios grow with dim(zi) since the log probability terms are computed by
summing over the dimensionality of zi.
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The Problem
What do the lowest latent variables code for?
Absolute Pearson correlations between data representations in all layers of the inference
network of a hierarchical VAE trained on FashionMNIST and of another trained on MNIST.

Correlation computed between the representations of the two different models given the same
data, FashionMNIST (top) and MNIST (bottom).
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The L>k likelihood bound
An alternative likelihood bound, L>k

An alternative version of the ELBO that only partially uses the approximate posterior can be
written as [5]

L>k(x; θ, φ) = Epθ(z≤k|z>k)qφ(z>k|x)

[
log pθ(x|z)pθ(z>k)

qφ(z>k|x)

]
(3)

Here, we have replaced the approximate posterior qφ(z|x) with a different proposal distribution
that combines part of the approximate posterior with the conditional prior, namely

pθ(z≤k|z>k)qφ(z>k|x)

This bound uses the conditional prior for the lowest latent variables in the hierarchy.

9 DTU Compute Hierchical VAEs Know What They Don’t Know 19.6.2021



Likelihood ratio
Likelihood ratios
We can use our new bound to compute the score used in a standard likelihood ratio test [1].

LLR>k(x) ≡ L(x)− L>k(x) . (4)

We can inspect what this likelihood-ratio measures by considering the exact form of our
bounds.

L = log pθ(x)−DKL (qφ(z|x)||pθ(z|x)) , (5)
L>k = log pθ(x)−DKL (pθ(z≤|z>k)qφ(z>k|x)||pθ(z|x)) .

In the likelihood ratio the reconstruction terms cancel out and only the KL-divergences from
the approximate to the true posterior remain.

LLR>k(x) = −DKL (qφ(z|x)||pθ(z|x)) (6)
+DKL (pθ(z≤|z>k)qφ(z>k|x)||pθ(z|x)) .
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Likelihood ratio
Importance sampling the ELBO

The well-known importance weighted autoencoder (IWAE) bound is tight with the true
likelihood in the limit of infinite samples, S →∞ [4],

LS = Eq(z|x)

[
log 1

N

S∑
s=1

p(x, z(s))
q(z(s)|x)

]
≤ log pθ(x) , (7)

Consequently, by importance sampling the ELBO, the associated KL-divergence associated
vanishes and our likelihood ratio reduces to the KL-divergence associated with L>k.

LLR>kS (x)→ DKL(p(z≤|z>k)q(z>k|x)||p(z|x)) . (8)

We can now see that LLR>kS (x) performs OOD detection based on the top-most latent
variables.
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Likelihood ratio
Results with LLR>k
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(a) FashionMNIST HVAE evaluated on MNIST
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(b) CIFAR10 BIVA evaluated on SVHN
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Likelihood ratio
Results with LLR>k

OOD dataset Metric AUROC↑

Trained on CIFAR10

SVHN LLR>2 0.811
CIFAR10 LLR>1 0.469

Trained on SVHN

CIFAR10 LLR>1 0.939
SVHN LLR>1 0.489

OOD dataset Metric AUROC↑

Trained on FashionMNIST

MNIST LLR>1 0.986
notMNIST LLR>1 0.998
KMNIST LLR>1 0.974
Omniglot28x28 LLR>2 1.000
Omniglot28x28Inverted LLR>1 0.954
SmallNORB28x28 LLR>2 0.999
SmallNORB28x28Inverted LLR>2 0.941
FashionMNIST LLR>1 0.488

Trained on MNIST

FashionMNIST LLR>1 0.999
notMNIST LLR>1 1.000
KMNIST LLR>1 0.999
Omniglot28x28 LLR>1 1.000
Omniglot28x28Inverted LLR>1 0.944
SmallNORB28x28 LLR>1 1.000
SmallNORB28x28Inverted LLR>1 0.985
MNIST LLR>2 0.515
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Thank you for your attention
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