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Defining OOD detection

Out-of-distribution (OOD) detection is about
enabling models to distinguish the training
data distribution p(x) from any other
distribution p(x).

We are concerned with doing this on a
per-datapoint basis, i.e. answering the
question:

"Was x sampled from p(x) or not?"
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Problem and Contributions

® Deep generative models often fail at OOD detection task when using their likelihood estimate as the
score function [6] by, perhaps surprisingly, assigning higher likelihoods to the OOD data.

® Contributions:

® We present a fast and fully unsupervised method for OOD detection competitive with the
state-of-the-art

® We provide evidence that out-of-distribution detection fails due to learned low-level features
that generalize across datasets.
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In distribution?
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Out of distribution?
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Hierarchical VAE =
We choose the hierarchical VAE as our model [2, 3].
q6(z/x) po(x,2)
polx) = [ polx,2)dz = [ po(xla)po(z)dz N0
Specifically we use ,’/ \
@ a three-layered hierarchical VAE with bottom-up inference and ! @ \
deterministic skip-connections for both inference and generation. | .
Generative model:  py(x|z) = po(x|z1)po(z1|22)p(23), l‘\ | é e i
Inference model: ¢4 (z|x) = q(21|X)qs(22|21)q4(23|22). \l\“ li/
\ /
@ a ten-layered layered Bidirectional-Inference Variational Autoencoder )
(BIVA) [5].
19.6.2021
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What is wrong with the ELBO for OOD detection?
We can split the ELBO into two terms
po(x,2)
L(x;0,9) = Ey,(zlx) [bg %(Z’x)] = Ey, (zx)[l0g po(x|2)] — Dxr(gs(z[x)|[p(2)) . (1)
reconstruction likelihood regularization penalty
The first term is high if the data is well-explained by z.
The second term we can rewrite as,
Dict(9(2/%)|[P(2)) = By, (ape) | L1y log o202, 4 log o) o] (2)

The absolute log-ratios grow with dim(z;) since the log probability terms are computed by
summing over the dimensionality of z;.
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What do the lowest latent variables code for?

Absolute Pearson correlations between data representations in all layers of the inference
network of a hierarchical VAE trained on FashionMNIST and of another trained on MNIST.

Correlation computed between the representations of the two different models given the same
data, FashionMNIST (top) and MNIST (bottom).
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An alternative likelihood bound, £>*

An alternative version of the ELBO that only partially uses the approximate posterior can be
written as [5]

£>k(x5 0, (ZS) = IE':’109(

Po(x|2)pg(z>1)
4o (kl%) ] ®)

2|25 1) (75 [%) ll

Here, we have replaced the approximate posterior g4 (z|x) with a different proposal distribution
that combines part of the approximate posterior with the conditional prior, namely

Po(2<|251) 06 (251 |X)

This bound uses the conditional prior for the lowest latent variables in the hierarchy.
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Likelihood ratios
We can use our new bound to compute the score used in a standard likelihood ratio test [1].
LLR*(x) = L(x) — £7F(x) . (4)
We can inspect what this likelihood-ratio measures by considering the exact form of our
bounds.
L =logpy(x) — Dxw (g4(2|x)||pe(2[x)) , (5)
L£7F =log py(x) — Dk, (po(z<|251)q5(24]%)|[po(2]%)) -
In the likelihood ratio the reconstruction terms cancel out and only the KL-divergences from
the approximate to the true posterior remain.
LLR™"(x) = =Dk, (¢4(2x)|[po (x)) (6)

+ D1 (po(2<|2>1) 05 (251 1%)|IPo(2[x))
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Importance sampling the ELBO
The well-known importance weighted autoencoder (IWAE) bound is tight with the true
likelihood in the limit of infinite samples, S — oo [4],
s
1 - p(x,2)
_ — <

['S IE"q(z|x) log N Sz::l q(Z(s)‘X) = 10gpg(X) ) (7)
Consequently, by importance sampling the ELBO, the associated KL-divergence associated
vanishes and our likelihood ratio reduces to the KL-divergence associated with £>*.

LLRg"(x) — Dxui(p(2<|2>1)q(z>k]%)|[p(2]x)) - (8)

We can now see that LLR;k(X) performs OOD detection based on the top-most latent
variables.
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Results with LLR>*

True Positive Rate
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True Positive Rate
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(a) FashionMNIST HVAE evaluated on MNIST
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(b) CIFAR10 BIVA evaluated on SVHN
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Results with LLR>*
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OOD dataset Metric  AUROC?T

Trained on CIFAR10

SVHN LLR>? 0.811
CIFAR10 LLR>! 0.469
Trained on SVHN
CIFAR10 LLR>! 0.939
SVHN LLR>! 0.489
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OOD dataset Metric ~ AUROC?T
Trained on FashionMNIST
MNIST LLR>! 0.986
notMNIST LLR>! 0.998
KMNIST LLR>! 0.974
Omniglot28x28 LLR>? 1.000
Omniglot28x28Inverted LLR>! 0.954
SmalINORB28x28 LLR>? 0.999
SmallNORB28x28Inverted LLR>? 0.941
FashionMNIST LLR>! 0.488
Trained on MNIST
FashionMNIST LLR>! 0.999
notMNIST LLR>? 1.000
KMNIST LLR>! 0.999
Omniglot28x28 LLR>! 1.000
Omniglot28x28Inverted LLR>! 0.944
SmalINORB28x28 LLR>! 1.000
SmalINORB28x28Inverted LLR>! 0.985
MNIST LLR>? 0.515
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Thank you for your attention
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