Hierchical VAEs Know What They Don't Know

Jakob D. Havtorn¹², Søren Hauberg¹, Jes Frellsen¹, Lars Maaløe¹²

 $^1 \mbox{Department}$ of Applied Mathematics and Computer Science, Technical University of Denmark $^2 \mbox{Corti}$ AI, Copenhagen

DTU Compute

Department of Applied Mathematics and Computer Science

Out-of-distribution detection Defining OOD detection

Out-of-distribution (OOD) detection is about enabling models to distinguish the training data distribution $p(\mathbf{x})$ from any other distribution $\tilde{p}(\mathbf{x})$.

We are concerned with doing this on a per-datapoint basis, i.e. answering the question:

"Was ${\bf x}$ sampled from $p({\bf x})$ or not?"

Out-of-distribution detection Problem and Contributions

- Deep generative models often fail at OOD detection task when using their likelihood estimate as the score function [6] by, perhaps surprisingly, assigning **higher likelihoods** to the OOD data.
- Contributions:
 - We present a fast and fully unsupervised method for OOD detection competitive with the state-of-the-art
 - We provide evidence that out-of-distribution detection fails due to learned low-level features that generalize across datasets.

Out-of-distribution detection In distribution?

DTU

Out-of-distribution detection Out of distribution?

Models Hierarchical VAE

We choose the hierarchical VAE as our model [2, 3].

$$p_{\theta}(\mathbf{x}) = \int p_{\theta}(\mathbf{x}, \mathbf{z}) d\mathbf{z} = \int p_{\theta}(\mathbf{x} | \mathbf{z}) p_{\theta}(\mathbf{z}) d\mathbf{z}$$

Specifically we use

- a three-layered hierarchical VAE with bottom-up inference and deterministic skip-connections for both inference and generation.
 - $$\begin{split} \text{Generative model:} \quad & p_{\theta}(\mathbf{x}|\mathbf{z}) = p_{\theta}(\mathbf{x}|\mathbf{z}_1) p_{\theta}(\mathbf{z}_1|\mathbf{z}_2) p(\mathbf{z}_3), \\ \text{Inference model:} \quad & q_{\phi}(\mathbf{z}|\mathbf{x}) = q_{\phi}(\mathbf{z}_1|\mathbf{x}) q_{\phi}(\mathbf{z}_2|\mathbf{z}_1) q_{\phi}(\mathbf{z}_3|\mathbf{z}_2). \end{split}$$
- a ten-layered layered Bidirectional-Inference Variational Autoencoder (BIVA) [5].

 $q_{\phi}(\mathbf{z}|\mathbf{x}) \ p_{\theta}(\mathbf{x},\mathbf{z})$

 \mathbf{Z}_3

 \mathbf{z}_2

 \mathbf{z}_1

 \mathbf{x}

Zз

 \mathbf{Z}_2

 $\binom{1}{2} (\mathbf{z}_1)$

 \mathbf{x}

11

The Problem What is wrong with the ELBO for OOD detection?

We can split the ELBO into two terms

$$\mathcal{L}(\mathbf{x};\theta,\phi) = \mathbb{E}_{q_{\phi}(\mathbf{z}|\mathbf{x})} \left[\log \frac{p_{\theta}(\mathbf{x},\mathbf{z})}{q_{\phi}(\mathbf{z}|\mathbf{x})} \right] = \underbrace{\mathbb{E}_{q_{\phi}(\mathbf{z}|\mathbf{x})}[\log p_{\theta}(\mathbf{x}|\mathbf{z})]}_{\text{reconstruction likelihood}} - \underbrace{D_{\mathrm{KL}}(q_{\phi}(\mathbf{z}|\mathbf{x})||p(\mathbf{z}))}_{\text{regularization penalty}} .$$
(1)

The first term is high if the data is well-explained by \mathbf{z} .

The second term we can rewrite as,

$$D_{\mathrm{KL}}(q_{\phi}(\mathbf{z}|\mathbf{x})||p(\mathbf{z})) = \mathbb{E}_{q_{\phi}(\mathbf{z}|\mathbf{x})} \left[\sum_{i=1}^{L-1} \log \frac{p_{\theta}(\mathbf{z}_{i}|\mathbf{z}_{i+1})}{q_{\phi}(\mathbf{z}_{i}|\mathbf{z}_{i-1})} + \log \frac{p_{\theta}(\mathbf{z}_{L})}{q_{\phi}(\mathbf{z}_{L}|\mathbf{z}_{L-1})} \right].$$
(2)

The absolute log-ratios grow with $\dim(\mathbf{z}_i)$ since the log probability terms are computed by summing over the dimensionality of \mathbf{z}_i .

DTU

=

The Problem

What do the lowest latent variables code for?

Absolute Pearson correlations between data representations in all layers of the inference network of a hierarchical VAE trained on FashionMNIST and of another trained on MNIST.

Correlation computed between the representations of the two different models given the same data, FashionMNIST (top) and MNIST (bottom).

DTU

The $\mathcal{L}^{>k}$ likelihood bound An alternative likelihood bound, $\mathcal{L}^{>k}$

An alternative version of the ELBO that only partially uses the approximate posterior can be written as [5]

$$\mathcal{L}^{>k}(\mathbf{x};\theta,\phi) = \mathbb{E}_{p_{\theta}(\mathbf{z}_{\leq k}|\mathbf{z}_{>k})q_{\phi}(\mathbf{z}_{>k}|\mathbf{x})} \left[\log \frac{p_{\theta}(\mathbf{x}|\mathbf{z})p_{\theta}(\mathbf{z}_{>k})}{q_{\phi}(\mathbf{z}_{>k}|\mathbf{x})} \right]$$
(3)

Here, we have replaced the approximate posterior $q_{\phi}(\mathbf{z}|\mathbf{x})$ with a different proposal distribution that combines part of the approximate posterior with the conditional prior, namely

$$p_{\theta}(\mathbf{z}_{\leq k}|\mathbf{z}_{>k})q_{\phi}(\mathbf{z}_{>k}|\mathbf{x})$$

This bound uses the conditional prior for the lowest latent variables in the hierarchy.

Likelihood ratio Likelihood ratios

We can use our new bound to compute the score used in a standard likelihood ratio test [1].

$$LLR^{>k}(\mathbf{x}) \equiv \mathcal{L}(\mathbf{x}) - \mathcal{L}^{>k}(\mathbf{x}) .$$
(4)

We can inspect what this likelihood-ratio measures by considering the exact form of our bounds.

$$\mathcal{L} = \log p_{\theta}(\mathbf{x}) - D_{\mathrm{KL}} \left(q_{\phi}(\mathbf{z}|\mathbf{x}) || p_{\theta}(\mathbf{z}|\mathbf{x}) \right),$$

$$\mathcal{L}^{>k} = \log p_{\theta}(\mathbf{x}) - D_{\mathrm{KL}} \left(p_{\theta}(\mathbf{z} \leq |\mathbf{z}_{>k}) q_{\phi}(\mathbf{z}_{>k}|\mathbf{x}) || p_{\theta}(\mathbf{z}|\mathbf{x}) \right) .$$
(5)

In the likelihood ratio the reconstruction terms cancel out and only the KL-divergences from the approximate to the true posterior remain.

$$LLR^{>k}(\mathbf{x}) = -D_{\mathrm{KL}} \left(q_{\phi}(\mathbf{z}|\mathbf{x}) || p_{\theta}(\mathbf{z}|\mathbf{x}) \right) + D_{\mathrm{KL}} \left(p_{\theta}(\mathbf{z} \leq |\mathbf{z}_{>k}) q_{\phi}(\mathbf{z}_{>k}|\mathbf{x}) || p_{\theta}(\mathbf{z}|\mathbf{x}) \right) .$$
(6)

DTU

₩

Likelihood ratio Importance sampling the ELBO

The well-known importance weighted autoencoder (IWAE) bound is tight with the true likelihood in the limit of infinite samples, $S \rightarrow \infty$ [4],

$$\mathcal{L}_{S} = \mathbb{E}_{q(\mathbf{z}|\mathbf{x})} \left[\log \frac{1}{N} \sum_{s=1}^{S} \frac{p(\mathbf{x}, \mathbf{z}^{(s)})}{q(\mathbf{z}^{(s)}|\mathbf{x})} \right] \le \log p_{\theta}(\mathbf{x}) , \qquad (7)$$

Consequently, by importance sampling the ELBO, the associated KL-divergence associated vanishes and our likelihood ratio reduces to the KL-divergence associated with $\mathcal{L}^{>k}$.

$$LLR_S^{>k}(\mathbf{x}) \to D_{\mathrm{KL}}(p(\mathbf{z}_{\leq}|\mathbf{z}_{>k})q(\mathbf{z}_{>k}|\mathbf{x})||p(\mathbf{z}|\mathbf{x})) .$$
(8)

We can now see that $LLR_S^{>k}(\mathbf{x})$ performs OOD detection based on the top-most latent variables.

Likelihood ratio Results with $LLR^{>k}$

12 DTU Compute

Likelihood ratio Results with $LLR^{>k}$

OOD dataset	Metric	AUROC↑	
Trained on CIFAR10			
SVHN	$LLR^{>2}$	0.811	
CIFAR10	$LLR^{>1}$	0.469	
Trained on SVHN			
CIFAR10	$LLR^{>1}$	0.939	
SVHN	$LLR^{>1}$	0.489	

OOD dataset	Metric	AUROC↑	
Trained on FashionMNIST			
MNIST	$LLR^{>1}$	0.986	
notMNIST	$LLR^{>1}$	0.998	
KMNIST	$LLR^{>1}$	0.974	
Omniglot28x28	$LLR^{>2}$	1.000	
Omniglot28x28Inverted	$LLR^{>1}$	0.954	
SmallNORB28x28	$LLR^{>2}$	0.999	
SmallNORB28x28Inverted	$LLR^{>2}$	0.941	
FashionMNIST	$LLR^{>1}$	0.488	
Trained on MNIST			
FashionMNIST	$LLR^{>1}$	0.999	
notMNIST	$LLR^{>1}$	1.000	
KMNIST	$LLR^{>1}$	0.999	
Omniglot28x28	$LLR^{>1}$	1.000	
Omniglot28x28Inverted	$LLR^{>1}$	0.944	
SmallNORB28x28	$LLR^{>1}$	1.000	
SmallNORB28x28Inverted	$LLR^{>1}$	0.985	
MNIST	$LLR^{>2}$	0.515	

Thank you for your attention

Bibliography I

- [1] Adolf Buse. "The likelihood ratio, Wald, and Lagrange multiplier tests: An expository note". In: *The American Statistician* 36.3 (1982), pp. 153–157.
- [2] Diederik P Kingma and Max Welling. "Auto-Encoding Variational Bayes". In: Proceedings of the 2nd International Conference on Learning Representations (ICLR). International Conference on Learning Representations. Banff, AB, Canada, 2014. arXiv: 1312.6114. URL: http://arxiv.org/abs/1312.6114 (visited on 06/07/2018).
- [3] Danilo Jimenez Rezende, Shakir Mohamed, and Daan Wierstra. "Stochastic Backpropagation and Approximate Inference in Deep Generative Models". In: Proceedings of Machine Learning Research. International Conference on Machine Learning. Vol. 32. Beijing, China: PMLR, Jan. 16, 2014, pp. 1278–1286. URL: http://proceedings.mlr.press/v32/rezende14.pdf (visited on 08/12/2018).

Bibliography II

- [4] Yuri Burda, Roger Grosse, and Ruslan R. Salakhutdinov. "Importance Weighted Autoencoders". In: Proceedings of the 4th International Conference on Learning Representations (ICLR). International Conference on Learning Representations. San Juan, Puerto Rico, 2016, p. 8. URL: https://arxiv.org/abs/1509.00519 (visited on 10/04/2017).
- [5] Lars Maaløe et al. "BIVA: A Very Deep Hierarchy of Latent Variables for Generative Modeling". In: Proceedings of the 32nd Conference on Neural Information Processing Systems (NeurIPS). Conference on Neural Information Processing Systems. Vancouver, Canada, Feb. 6, 2019, pp. 6548–6558. URL: http://arxiv.org/abs/1902.02102 (visited on 03/19/2019).

Bibliography III

[6] Eric Nalisnick et al. "Do Deep Generative Models Know What They Don't Know?" In: Proceedings of the 7th International Conference on Learning Representations (ICLR). International Conference on Learning Representations. New Orleans, LA, USA, 2019. arXiv: 1810.09136. URL: http://arxiv.org/abs/1810.09136 (visited on 10/02/2019).