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Introduction

• Intersection over Union (IoU)

• Bounding box regression

• Dense pixelwise prediction
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Introduction

• Learning IoU: 𝐿iou = 1 − IoU

• Issue: zero-gradient for learning if (i) no-overlaps, (ii) only different locations

• Human cognition can judge that the optimization should be further performed. 

• Learning over IoU yields suboptimal performance and leads to slower convergence.

• Our solution: PixIoU, steeper gradients for this cases.

Non-overlaps Different locations
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Method

• Ingrate the coordinates of mispredicted pixels into the calculation:

• IoU: 𝑂 𝑁 for 𝑁 pixels.

• PixIoU: 𝑂 𝑘𝑁 with 𝑘 additionally: a mean for the centers, an Euclidean, a dot product.

Definition: PixIoU =
𝒎 − 𝒅𝒏,𝟏𝒏

𝒎 + 𝒅𝒑,𝟏𝒑
+ IoU−1,

𝒅𝒏, 𝒅𝒑 is the normalized Euclidean distances to the centers.
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Properties:
1. PixIoU is invariant to the scale of the problem.
2. PixIoU is always a lower bound of IoU; it becomes 

tighter when the predictions get better.
3. PixIoU is well-bounded.
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Method

• Learning PixIoU: 𝐿pix = 1 − PixIoU

• Submodular functions: diminishing returns property.

• Efficient surrogate function: the Lovász surrogate, yields a convex surface, provides a 
polynomial computation complexity.

• Lovász Softmax (Berman et al., 2018) is proposed for learning 𝐿iou.

• Lovász surrogate for learning 𝑳pix: additionally 𝒅𝒏, 𝟏𝒏 and 𝒅𝒑, 𝟏𝒑 .

Proposition: Given a groundtruth, 𝐿pix(∙, A), is submodular w.r.t. the set of 

mispredictions of A to the groundtruth.

Berman et al., 2018Yu et al., 2015, 2020
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Results

• Pixelwise Object Tracking on VOT2020

• Semantic segmentation on Pascal VOC
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• Semantic segmentation on Cityscapes
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PixIoU provides larger gradients than IoU.
Predictions with larger PixIoU provides better qualitative results.

More details please refer to our paper. …
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