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Problem: Gaussian process inference with derivatives

Model f: R” — R with a GP and N observations has cost

compute  memory

GP inference with functions O(N?) O(N?)
GP inference with gradients O((DN)3)  O((DN)?)

— 1 gradient observation = D function evaluations

This work shows that

Gradient inference requires | O(DN? + N°)| compute and | O(DN + N?)| memory

Translation: 1 gradient can be cheaper than D function evaluations



Solution: Structured kernels admit efficient matrix inversion
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Figure: Kernel Gram matrix for RBF kernel with N = 3 gradient observations in D = 10 dimensions.

Woodbury's matrix inversion lemma
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Implications: High-dimensional GP inference with gradients

Highlights (for N < D):
+ Reduced compute and memory

+ Efficient implicit matrix-vector
multiplication

+ Algorithms for optimization and sampling
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Figure: cpu(Woodbury) divided by cpu(Cholesky)
for different dimensions and Gram matrices up to
size 50 000.



Key takeaway:

Gradient inference is efficient in high-dimensional Gaussian processes

Paper arxiv:2102.07542

Code https://github.com/fidero/gp-derivative

Thank you!


https://arxiv.org/abs/2102.07542
https://github.com/fidero/gp-derivative

