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Problem: Gaussian process inference with derivatives

Model f : RD_R with a GP and N observations has cost

compute memory
GP inference with functions O(N3) O(N2)
GP inference with gradients O((DN)3) O((DN)2)

→ 1 gradient observation =̂ D function evaluations

This work shows that

Gradient inference requires O(DN2 + N6) compute and O(DN + N2) memory

Translation: 1 gradient can be cheaper than D function evaluations
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Solution: Structured kernels admit efficient matrix inversion
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Figure: Kernel Gram matrix for RBF kernel with N = 3 gradient observations in D = 10 dimensions.

Woodbury’s matrix inversion lemma

(B + UCUᵀ)
−1

= B−1 −B−1U
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)−1
UᵀB−1
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Implications: High-dimensional GP inference with gradients

Highlights (for N < D):
D Reduced compute and memory

D Efficient implicit matrix-vector
multiplication

D Algorithms for optimization and sampling 0.0 0.2 0.4 0.6 0.8 1.0
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Figure: cpu(Woodbury) divided by cpu(Cholesky)
for different dimensions and Gram matrices up to
size 50 000.
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Key takeaway:

Gradient inference is efficient in high-dimensional Gaussian processes

Paper arxiv:2102.07542

Code https://github.com/fidero/gp-derivative

Thank you!
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