High-Dimensional Gaussian Process Inference with Derivatives

Filip de Roos, Alexandra Gessner & Philipp Hennig

ICML 2021

EBERHARD KARLS UNIVERSITÄT TÜBINGEN

imprs-is

International Max Planck Research School on Intelligent Systems

some of the presented work is supported by the European Research Council.

Problem: Gaussian process inference with derivatives

Model $f : \mathbb{R}^D \to \mathbb{R}$ with a GP and N observations has cost

	compute	memory
GP inference with functions	$\mathcal{O}(N^3)$	$\mathcal{O}(N^2)$
GP inference with gradients	$\mathcal{O}((DN)^3)$	$\mathcal{O}((DN)^2)$

 $\rightarrow 1$ gradient observation $\widehat{=} D$ function evaluations

This work shows that

Gradient inference requires $\mathcal{O}(DN^2 + N^6)$ compute and $\mathcal{O}(DN + N^2)$ memory Translation: 1 gradient can be cheaper than D function evaluations

Solution: Structured kernels admit efficient matrix inversion

Figure: Kernel Gram matrix for RBF kernel with N = 3 gradient observations in D = 10 dimensions.

Woodbury's matrix inversion lemma

$$(B + UCU^{\mathsf{T}})^{-1} = B^{-1} - B^{-1}U(C^{-1} + U^{\mathsf{T}}B^{-1}U)^{-1}U^{\mathsf{T}}B^{-1}$$

Implications: High-dimensional GP inference with gradients

Highlights (for N < D):

- + Reduced compute and memory
- + Efficient implicit matrix-vector multiplication
- + Algorithms for optimization and sampling

Figure: cpu(Woodbury) divided by cpu(Cholesky) for different dimensions and Gram matrices up to size 50 000.

Key takeaway:

Gradient inference is efficient in high-dimensional Gaussian processes

Paper arxiv:2102.07542

Code https://github.com/fidero/gp-derivative

Thank you!