High-Dimensional Gaussian Process Inference with Derivatives

Filip de Roos, Alexandra Gessner \& Philipp Hennig

ICML 2021

EBERHARD KARLS
UNIVERSITAT TUBINGEN

MAX PLANCK INSTITUTE 1 npIS-iS $\quad \begin{aligned} & \text { International Max Planck Research } \\ & \text { School on Intelligent Systems }\end{aligned}$
some of the presented work is supported
by the European Research Council.
èrc

Problem: Gaussian process inference with derivatives

Model $f: \mathbb{R}^{D} \rightarrow \mathbb{R}$ with a GP and N observations has cost

	compute	memory
GP inference with functions	$\mathcal{O}\left(N^{3}\right)$	$\mathcal{O}\left(N^{2}\right)$
GP inference with gradients	$\mathcal{O}\left((D N)^{3}\right)$	$\mathcal{O}\left((D N)^{2}\right)$

$\rightarrow 1$ gradient observation $\widehat{=} D$ function evaluations

This work shows that

Gradient inference requires $\mathcal{O}\left(D N^{2}+N^{6}\right)$ compute and $\mathcal{O}\left(D N+N^{2}\right)$ memory
Translation: 1 gradient can be cheaper than D function evaluations

Solution: Structured kernels admit efficient matrix inversion

Figure: Kernel Gram matrix for RBF kernel with $N=3$ gradient observations in $D=10$ dimensions.

Woodbury's matrix inversion lemma

$$
\left(B+U C U^{\top}\right)^{-1}=B^{-1}-B^{-1} U\left(C^{-1}+U^{\top} B^{-1} U\right)^{-1} U^{\top} B^{-1}
$$

Implications: High-dimensional GP inference with gradients

Highlights (for $N<D$):

+ Reduced compute and memory
+ Efficient implicit matrix-vector multiplication
+ Algorithms for optimization and sampling

Figure: cpu (Woodbury) divided by cpu(Cholesky) for different dimensions and Gram matrices up to size 50000.

Key takeaway:

Gradient inference is efficient in high-dimensional Gaussian processes

Paper arxiv:2102.07542
Code https://github.com/fidero/gp-derivative
Thank you!

