

Roland S. Zimmermann*, Yash Sharma*, Steffen Schneider*, Matthias Bethge[†], Wieland Brendel[†]

◆ Our Theory

empirically successful

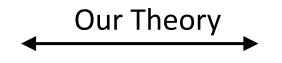
Our Theory ►

◆ Our Theory

Disentanglement Nonlinear ICA

Image Space

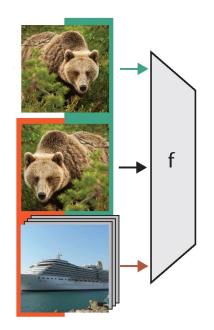
Representation Space

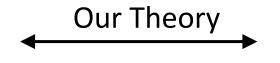


Disentanglement Nonlinear ICA

Image Space

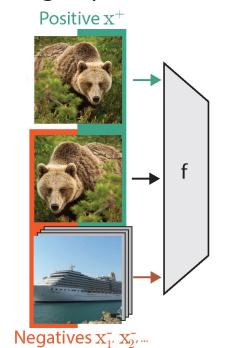
Representation Space



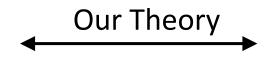


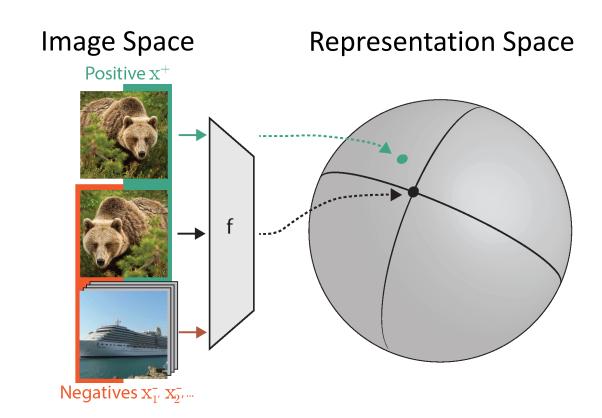
Disentanglement Nonlinear ICA

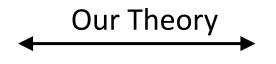
Image Space

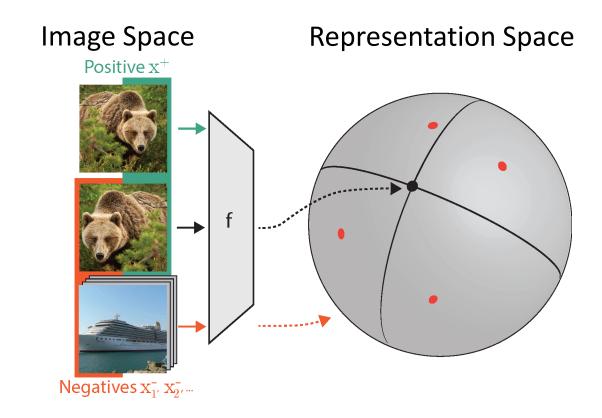


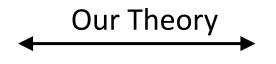
Representation Space



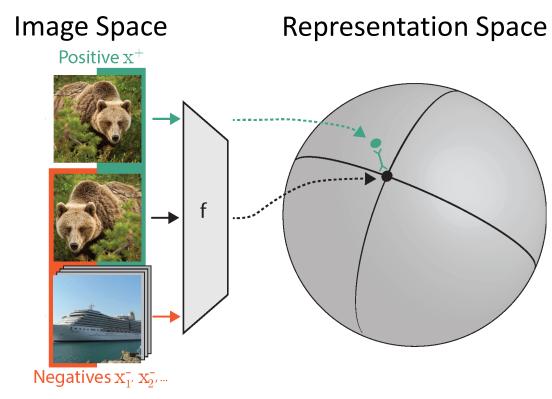






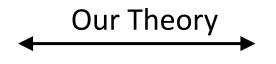


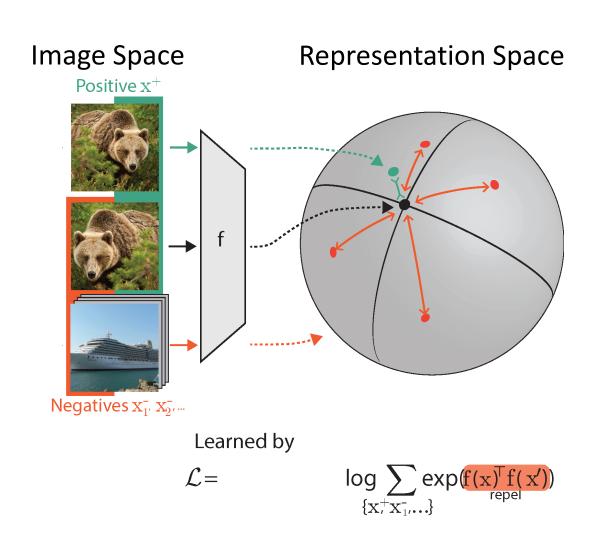
Disentanglement Nonlinear ICA

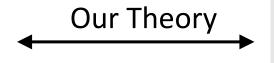


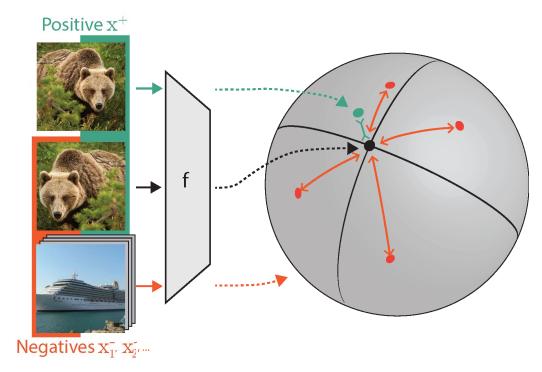
Learned by

$$\mathcal{L} = -f(x)^T f(x^+)$$



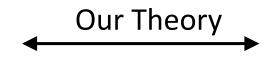


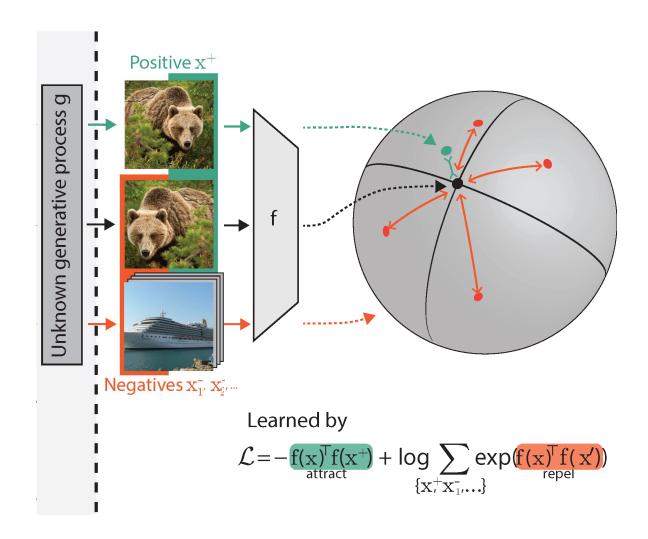


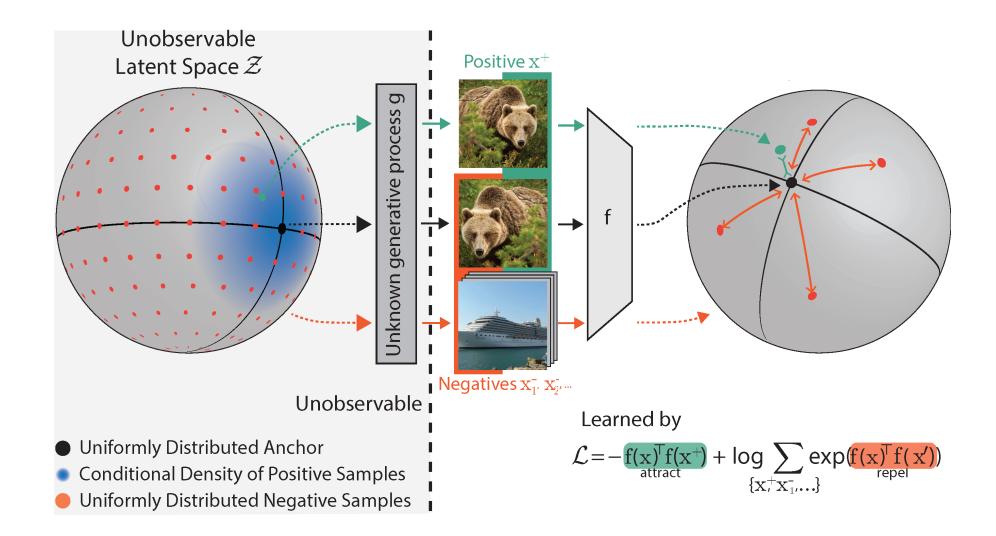


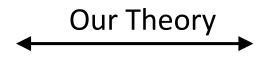
Learned by

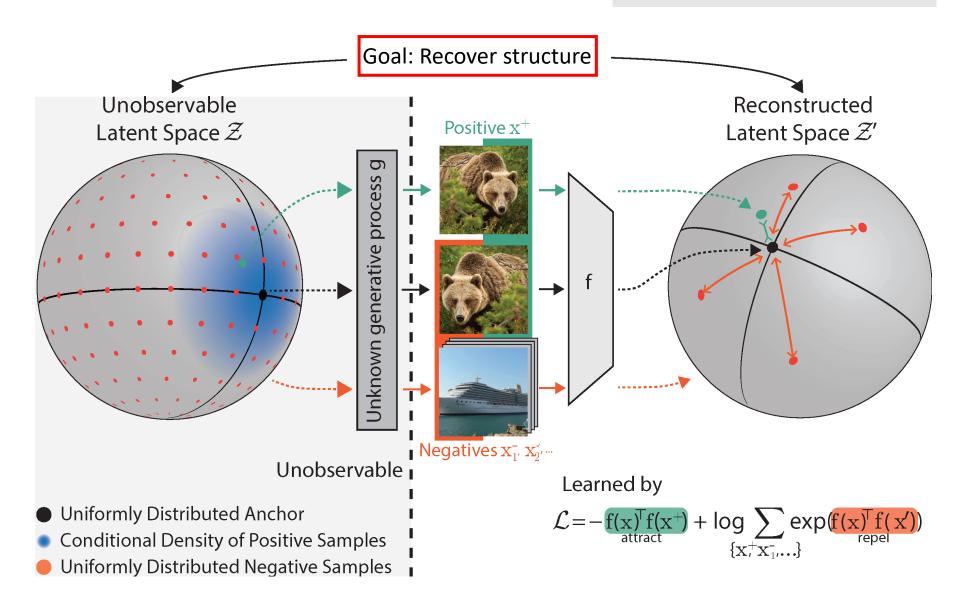
$$\mathcal{L} = -\underbrace{\mathbf{f}(\mathbf{x})^{\mathsf{T}}\mathbf{f}(\mathbf{x}^{+})}_{\text{attract}} + \underbrace{\log \sum_{\{\mathbf{x}_{1}^{+}\mathbf{x}_{1}^{-},\ldots\}}}_{\text{exp}} \exp\underbrace{\mathbf{f}(\mathbf{x})^{\mathsf{T}}\mathbf{f}(\mathbf{x}^{\prime})}_{\text{repel}}$$

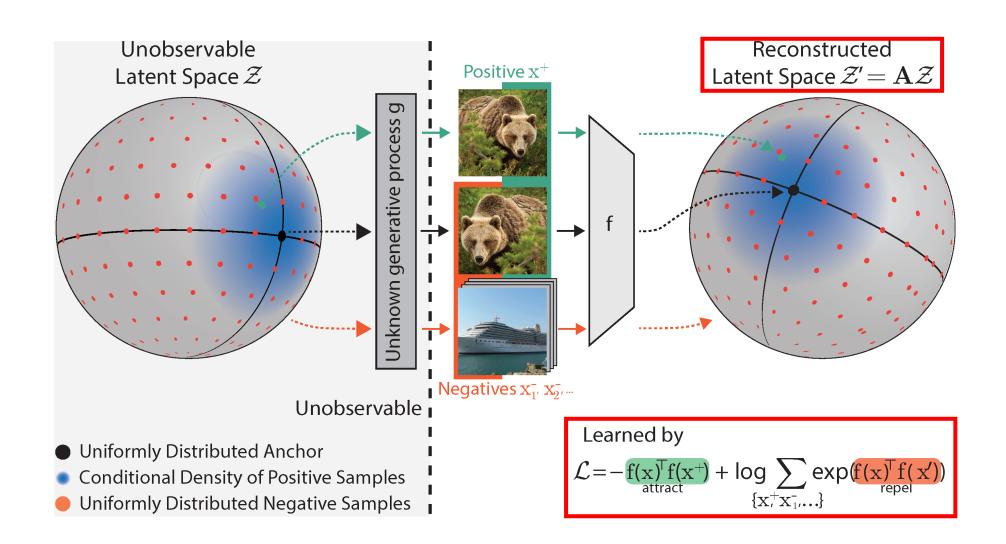












Learned by

$$\mathcal{L} = -\frac{f(\mathbf{x})^T f(\mathbf{x}^+)}{\text{attract}} + \log \sum_{\{\mathbf{x}_1^+ \mathbf{x}_1^-, \dots\}} \exp(f(\mathbf{x})^T f(\mathbf{x}'))$$

Assumptions

Learned by

$$\mathcal{L} = -\underbrace{f(\mathbf{x})^{\mathsf{T}}f(\mathbf{x}^{\mathsf{+}})}_{\text{attract}} + \underbrace{\log \sum_{\{\mathbf{x}_{1}^{\mathsf{+}}\mathbf{x}_{1}^{\mathsf{-}}\dots\}}}_{\text{exp}} \exp\underbrace{(\mathbf{f}(\mathbf{x})^{\mathsf{T}}f(\mathbf{x}^{\mathsf{+}}))}_{\text{repel}}$$

Assumptions implicitly encoded

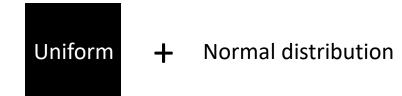
Learned by

$$\mathcal{L} = -\underbrace{f(\mathbf{x})^{\mathsf{T}} f(\mathbf{x}^{\mathsf{+}})}_{\text{attract}} + \underbrace{\log \sum_{\{\mathbf{x}_{1}^{\mathsf{+}} \mathbf{x}_{1}^{\mathsf{-}}, \dots\}} \exp(f(\mathbf{x})^{\mathsf{T}} f(\mathbf{x}^{\mathsf{+}}))}_{\text{repel}}$$

Learned by

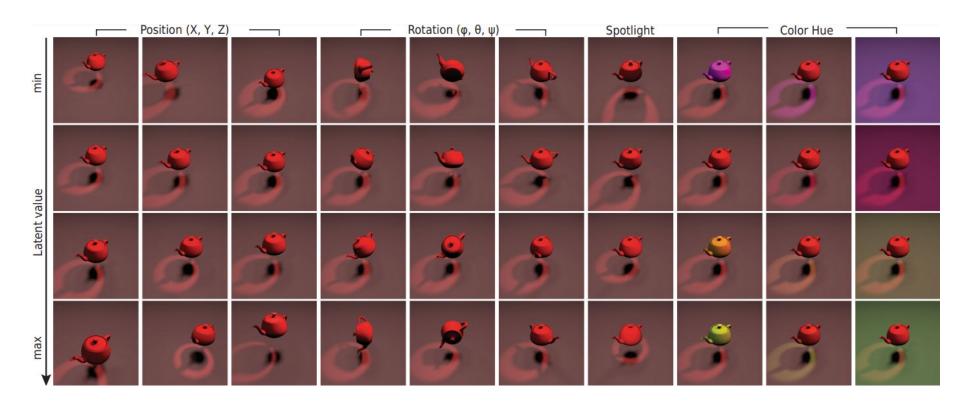
$$\mathcal{L} = \frac{\|f(x) - f(x^{+})\|_{2}^{2}}{\text{attract}} + \log \sum_{\{x, + x_{1}^{-}, ...\}} \exp(-\|f(x) - f(x')\|_{2}^{2})$$

Assumptions encoded



We show

Successful Disentanglement on Visually Complex Images



3DIdent Dataset:

- High resolution
- Hallmarks of natural environments (shadows, lighting conditions, 3D object)

Summary

Prove that contrastive learning (InfoNCE) inverts specified data generating processes

Works on complex visual data and is robust to mismatches

Outlook

Theory provides insights in constructing more effective contrastive losses

