
Positive-Negative Momentum:
Manipulating Stochastic Gradient Noise to

Improve Generalization

Zeke Xie1, 2, Li Yuan3, Zhanxing Zhu4, and Masashi Sugiyama2, 1

1The University of Tokyo
2RIKEN Center for AIP

3National University of Singapore
4Beijing Institute of Big Data Research

ICML2021, July, 2021

1 / 12



Positive-Negative Momentum (PNM)

Motivation:
As Stochastic Gradient Noise (SGN) is important, we want to
manipulate SGN to improve deep learning.

Constraint:
We prefer not to change the learning rate or batch size due to
multiple limitations.

Our work:
PNM, an alternative to conventional Momentum, can
manipulate SGN without changing the learning rate or batch
size.

2 / 12



Manipulating SGN by changing η
B .

(Mandt et al., 2017): The magnitude of SGN is proportional to η
B ,

where η is the learning rate and B is the batch size.

(He et al., 2019) argued that increasing η
B which corresponds

larger SGN may improve generalization.

(Xie et al., 2021) argued that η
B exponentially matters to

learning flat minima.

Stephan, M., Hoffman, M. D., and Blei, D. M. (2017). Stochastic Gradient Descent
as Approximate Bayesian Inference. JMLR.
He, F., Liu, T., and Tao, D. (2019). Control batch size and learning rate to generalize
well: Theoretical and empirical evidence. In NeurIPS.
Zeke Xie, Issei Sato, and Masashi Sugiyama. (2021). A Diffusion Theory For Deep
Learning Dynamics: Stochastic Gradient Descent Exponentially Favors Flat Minima.
In ICLR.

3 / 12



Increasing η
B has at least three limitations.

Three Limitations:

1 Training with a too small batch size is computationally
expensive per epoch and often requires more epochs for
convergence.

2 Increasing the learning rate only works in a narrow range,
since too large initial learning rates may lead to optimization
divergence or bad convergence.

3 Decaying the ratio η
B during training (via learning rate decay)

is almost necessary for the convergence/training of deep
networks.

4 / 12



Basic idea: Positive-Negative Weighted Average

Suppose that g (a) and g (b) are two independent unbiased noisy
gradients of ∇f (θ), where f (θ) is the loss. Then their weighted
average is

ḡ =(1 + β0)g (a) − β0g
(b)

=∇f (θ) + ξ̄,

where the gradient noise ξ̄ = (1 + β0)ξ(a) − β0ξ
(b). If β0 > 0 and

σ2 = Var(ξ(a)) = Var(ξ(a)), we have the same gradient expectation
E[ξ̄] = 0 but larger gradient noise

Var(ξ̄) = [(1 + β0)2 + β2
0 ]σ2.

β0 controls the noise magnitude!

5 / 12



From Momentum to Positive-Negative Momentum

Momentum: uses the (positive only) weighted average of past
gradients to update parameters as

mt =
t∑

k=0

β3β
t−k
1 gk .

Then we approximately have E[m] ≈ β3
1−β1
∇f (θ). The SGN in

momentum is given by

ξmt =
t∑

k=0

β3β
t−k
1 ξk .

Algorithm 1: Momentum

mt = β1mt−1 + β3gt ;
θt+1 = θt − ηmt ;

6 / 12



PNM can manipulate SGN

PNM: uses the (positive-negative) weighted average of past
gradients to update parameters.
PNM maintains two independent momentum terms as

m
(odd)
t =

∑
k=1,3,...,t β3β

t−k
1 gk ,

m
(even)
t =

∑
k=0,2,...,t−1 β3β

t−k
1 gk ,

mt = (1 + β0)m
(odd)
t − β0m

(even)
t ,

by using two alternate sequences of past gradients, respectively.
Then we approximately have E[m] ≈ β3

1−β1
∇f (θ). The SGN in

PNM is given by

Var(ξpnm) ≈ [(1 + β0)2 + β2
0 ]ξm.

β0 controls the noise magnitude!

7 / 12



PNM: Algorithm and Theory

Algorithm 2: (Stochastic) PNM

mt = β2
1mt−2 + (1− β2

1)gt ;
θt+1 = θt − η√

(1+β0)2+β2
0

[(1 + β0)mt − β0mt−1];

Theorem 1: PNM has the convergence guarantee similar to
Momentum.

Theorem 4: Stochastic PNM may have a tighter
generalization bound than SGD within the PAC-Bayesian
framework.

8 / 12



Experiment: PNM and AdaPNM

Table: PNM versus conventional Momentum. We report the mean and the
standard deviations (as the subscripts) of the optimal test errors computed over three
runs of each experiment.

Dataset Model PNM AdaPNM SGD Adam AMSGrad AdamW AdaBound Padam Yogi RAdam

CIFAR-10 ResNet18 4.480.09 4.940.05 5.010.03 6.530.03 6.160.18 5.080.07 5.650.08 5.120.04 5.870.12 6.010.10

VGG16 6.260.05 5.990.11 6.420.02 7.310.25 7.140.14 6.480.13 6.760.12 6.150.06 6.900.22 6.560.04

CIFAR-100 ResNet34 20.590.29 20.410.18 21.520.37 27.160.55 25.530.19 22.990.40 22.870.13 22.720.10 23.570.12 24.410.40

DenseNet121 19.760.28 20.680.11 19.810.33 25.110.15 24.430.09 21.550.14 22.690.15 21.100.23 22.150.36 22.270.22

GoogLeNet 20.380.31 20.260.21 21.210.29 26.120.33 25.530.17 21.290.17 23.180.31 21.820.17 24.240.16 22.230.15

0 25 50 75 100 125 150 175 200
Epochs

0.04

0.06

0.08

0.10

0.12

0.14

Te
st

 E
rro

r

ResNet18 - CIFAR10
PNM
AdaPNM
SGD
Adam
AMSGrad
AdamW
AdaBound
Padam
Yogi
RAdam

0 25 50 75 100 125 150 175 200
Epochs

0.200

0.225

0.250

0.275

0.300

0.325

0.350

0.375

0.400

Te
st

 E
rro

r

GoogLeNet - CIFAR100
PNM
AdaPNM
SGD
Adam
AMSGrad
AdamW
AdaBound
Padam
Yogi
RAdam

Figure: The learning curves of popular models on CIFAR-10 and
CIFAR-100, respectively. It demonstrates that PNM and AdaPNM yield
significantly better test results.

9 / 12



Experiment: PNM prevents overfitting noisy labels

0 25 50 75 100 125 150 175 200
Epochs

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

Te
st

 E
rro

r

SGD
PNM

0 25 50 75 100 125 150 175 200
Epochs

0.0

0.2

0.4

0.6

0.8

Tr
ai

ni
ng

 E
rro

r

SGD
PNM

0 25 50 75 100 125 150 175 200
Epochs

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

Te
st

 E
rro

r

SGD
PNM

0 25 50 75 100 125 150 175 200
Epochs

0.0

0.2

0.4

0.6

0.8

Tr
ai

ni
ng

 E
rro

r

SGD
PNM

Figure: ResNet34 on CIFAR-10 with 40% asymmetric label noise (Top
Row) and 40% symmetric label noise (Bottom Row). Left: Test Curve.
Right: Training Curve. PNM with a large β0 may effectively relieve
memorizing noisy labels and almost only learn clean labels, while SGD
almost memorizes all noisy labels and has a nearly zero training error.

10 / 12



Experiment: Robustness to the new hyperparameter β0.

1.0 0.5 0.0 0.5 1.0 1.5 2.0
0

0.042

0.044

0.046

0.048

0.050

0.052

0.054

Te
st

 E
rro

r

PNM
Heavy Ball

Figure: We train ResNet18 on CIFAR-10 under various β0 choices. It
demonstrates that PNM may achieve significantly better generalization
with a wide range of β0 > 0, which corresponds to a positive-negative
momentum pair for enhancing SGN as we expect. With any β0 ∈ [−1, 0],
the test performance does not sensitively depend on β0, because this case
cannot enhance SGN.

11 / 12



Summary

Three contributions:

1 PNM can manipulate SGN without changing the learning rate
or batch size.

2 PNM can replace conventional Momentum in popular
optimizers at low costs.

3 PNM can have a tighter generalization bound than SGD.

Future directions:

Rethinking the importance and the popularity of Momentum.

Designing optimization dynamics by manipulating SGN.

12 / 12


