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Positive-Negative Momentum (PNM)

o Motivation:
As Stochastic Gradient Noise (SGN) is important, we want to
manipulate SGN to improve deep learning.

o Constraint:
We prefer not to change the learning rate or batch size due to
multiple limitations.

@ Our work:
PNM, an alternative to conventional Momentum, can
manipulate SGN without changing the learning rate or batch
size.
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Manipulating SGN by changing

n
B

: The magnitude of SGN is proportional to £,
where 7 is the learning rate and B is the batch size.

° argued that increasing £ which corresponds
larger SGN may improve generalization.

° argued that I exponentially matters to
learning flat minima.



Increasing £ has at least three limitations.

Three Limitations:

@ Training with a too small batch size is computationally
expensive per epoch and often requires more epochs for
convergence.

@ Increasing the learning rate only works in a narrow range,
since too large initial learning rates may lead to optimization
divergence or bad convergence.

© Decaying the ratio § during training (via learning rate decay)
is almost necessary for the convergence/training of deep
networks.



Basic idea: Positive-Negative Weighted Average

Suppose that g(@) and g(®) are two independent unbiased noisy
gradients of V£ (6), where f(0) is the loss. Then their weighted
average is

g =1+ 5o)g® — Bog®
=VF(0) +¢,

where the gradient noise & = (1 + £0)&() — Bo(®). If By > 0 and
02_: Var(£(2) = Var(£(2)), we have the same gradient expectation
E[¢] = 0 but larger gradient noise

Var(€) = [(1 4 Bo)? + 3]0

Bo controls the noise magnitude!



From Momentum to Positive-Negative Momentum

Momentum: uses the (positive only) weighted average of past
gradients to update parameters as

t
me=>_ Bspi ¥eu.
k=0

Then we approximately have E[m] ~ 1f?’BIVf(9). The SGN in
momentum is given by

& =) B .
k=0

Algorithm 1: Momentum

me = Bime_1 + B38&¢;
9t+1 =0; — nmg;
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PNM can manipulate SGN

PNM: uses the (positive-negative) weighted average of past
gradients to update parameters.
PNM maintains two independent momentum terms as

dd _
mgo )= Zk:1,3,...,t B3 “gr,
mgeven) = Zk:0,2,...,t—1 ﬂ3/8:f_kgk=
m, = (1 + ﬁO)mi(:Odd) . Bomgeven)

)

by using two alternate sequences of past gradients, respectively.
Then we approximately have E[m] ~ lffBIVf(G). The SGN in
PNM is given by

Var(6P"™) ~ [(1 4 fo)? + B3l€™.

Bo controls the noise magnitude!



PNM: Algorithm and Theory

Algorithm 2: (Stochastic) PNM

my = B3me o + (1 — B7)gr;
Ory1 = 0r — \/ﬁw[(l + Bo)me — Bome—_1];

@ Theorem 1: PNM has the convergence guarantee similar to
Momentum.

@ Theorem 4: Stochastic PNM may have a tighter
generalization bound than SGD within the PAC-Bayesian

framework.




Experiment: PNM and AdaPNM

Table: PNM versus conventional Momentum. We
standard deviations (as the subscripts) of the optimal test
runs of each experiment.

report the mean and the
errors computed over three

DATASET MoDEL | PNM  ADAPNM SGD ADAM  AMSGRAD ADAMW ADABOUND PaDAM YOGl RADAM
CIFAR-10  ResNET18 4.48000 494005 501003 653003 6.16018 508007  5.6500 5120 587012 6.0lo10
v 626005 59911 6420 73loss  T.ldows 64815  6.7601 615005 6.90022  6.560.04

CIFAR-100 20592 2041015 21523 27.16055  25.53010 229940 2287013 27210 235701 24.41g4

21 | 1976025 2068011  19.8lo33 25.1lg:5 2443000 2155014 226915 2110053 2215035 2227022

GOOGLENET | 2038031 2026021  21.21gz 26.12033 25.53017 212917 231803 218217 2424016 2223015

ResNet18 - CIFAR10

GoogLeNet - CIFAR100
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Figure: The learning curves of popular models on CIFAR-10 and
CIFAR-100, respectively. It demonstrates that PNM and AdaPNM yield
significantly better test results.



Experiment: PNM prevents overfitting noisy labels

25 50 75 100 125 150 175 200 0 25 50 75 100 125 150 175 200
Epochs

25 50 75 100 125 150 175 200 25 50 75 100 125 150 175 2
Epochs Epochs.

Figure: ResNet34 on CIFAR-10 with 40% asymmetric label noise (Top

Row) and 40% symmetric label noise (Bottom Row). Left: Test Curve.

Right: Training Curve. PNM with a large 5o may effectively relieve
memorizing noisy labels and almost only learn clean labels, while SGD
almost memorizes all noisy labels and has a nearly zero training error.
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Experiment: Robustness to the new hyperparameter ;.
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Figure: We train ResNet18 on CIFAR-10 under various Sy choices. It
demonstrates that PNM may achieve significantly better generalization
with a wide range of By > 0, which corresponds to a positive-negative
momentum pair for enhancing SGN as we expect. With any 5y € [-1,0],
the test performance does not sensitively depend on Sy, because this case
cannot enhance SGN.
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Three contributions:
© PNM can manipulate SGN without changing the learning rate
or batch size.
@ PNM can replace conventional Momentum in popular
optimizers at low costs.
© PNM can have a tighter generalization bound than SGD.

Future directions:
@ Rethinking the importance and the popularity of Momentum.

@ Designing optimization dynamics by manipulating SGN.



