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Motivation

How many samples does it take to learn an optimal
policy in RL ?

Aymen Al Marjani Adaptive Sampling for BPI ICML 2021 3 / 21



Infinite horizon discounted MDPs

φ =< S,A, pφ, qφ, γ >

1 S,A: Finite state and action spaces.

2 After choosing action a at state s the
agent:

receives reward R(s, a) ∼ qφ(.|s, a)

and mean r(s, a) , Eq(.|s,a)[R(s, a)].
makes transition to s ′ ∼ pφ(.|s, a).
For simplicity, we assume q with
support in [0, 1] . Figure: src:packtpub
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Best Policy Identification

φ =< S,A, pφ, qφ, γ >
γ ∈ [0, 1) is the discount factor.

Identify a policy π : S → A maximizing the total discounted reward:

π?φ ∈ arg max
π

V π
φ (s) = Eφ

[ ∞∑
t=0

γtR(sπt , π(sπt ))

∣∣∣∣ s0 = s

]

δ-PC algorithm: Pφ(π̂?τ 6= π?) ≤ δ.
Identify π? using minimum number of samples!
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Assumptions

Assumption 1: π? , π?φ is unique.

Generative Model: The agent has access to a simulator. At round
t, she agent can query a sample any pair (st , at). She then observes
(Rt , s

′
t) ∼ qφ(.|st , at)⊗ pφ(.|st , at). Next, she can choose any other

pair (st+1, at+1) independently of her previous state.
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Learning: be specific!

Two kinds of guarantees:

Minimax over a set of
MDPs Φ:

inf
A:δ-PC

sup
φ∈Φ

Eφ,A[τδ]

Instance-specific: For a
given φ:

inf
A:δ-PC

Eφ,A[τδ]

We seek algorithms that can adapt to the hardness of the instance.
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Information-Theoretical lower bound

Define:

The set of alternative MDPs Alt(φ) = {ψ : π? is not optimal in ψ}.
Σ the simplex of RSA.

KLφ|ψ(s, a) = KL(qφ(s, a), qψ(s, a)) + KL(pφ(s, a), pψ(s, a))

Proposition 1

The sample complexity of any δ-PC algorithm satisfies: for any φ with a
unique optimal policy,

Eφ[τ ] ≥ T ?(φ) log(1/2.4δ),

where T ?(φ)−1 = sup
ω∈Σ

inf
ψ∈Alt(φ)

∑
s,a

ωsaKLφ|ψ(s, a). (1)
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IT Lower bound: Hard to solve !

Alt(φ) and Alts1a1(φ) are not convex.

=⇒ The sub-problem inf
ψ∈Alt(φ)

∑
s,a
ωsaKLφ|ψ(s, a) is non-convex.
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IT Lower bound: MDP vs MAB

MAB MDP
Parameters µ1 > . . . ≥ µK

(
r(s, a), p(s, a)

)
s,a

Objective Identify Identify
a? = arg max

a∈[K ]
µa π? = arg max

π
(I − γPπ)−1rπ

Alternative
⋃
a 6=1

{λ : λa > λ1}
⋃

s,a 6=π?(s)

{ψ : Qπ?

ψ (s, a) > V π?

ψ (s)}

instances union of convex sets Not union of convex sets

IT lower Easy to solve Hard to solve
bound
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Upper bound: Idea

Define the characteristic time: T (φ, ω)−1 , inf
ψ∈Alt(φ)

∑
s,a
ωsaKLφ|ψ(s, a).
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Upper bound: Idea

Define the characteristic time: T (φ, ω)−1 , inf
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Upper bound: Instance-specific quantities

Define:

The sub-optimality gap: ∆sa = V ?
φ (s)− Q?

φ(s, a).

The minimum gap ∆min = mins,a 6=π?(s) ∆sa.

The variance of the value function Var(s,a)[V ?
φ ] = Vs′∼pφ(.|s,a)[V ?

φ (s)].

The span of the value function sp[V ?
φ ] = maxs V

?
φ (s)−mins V

?
φ (s).
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Upper bound of the characteristic time

Theorem 1 (Upper bound of minimal sample complexity)

For all vectors ω in the simplex:

T (φ, ω) ≤ U(φ, ω) , max
s,a 6=π?(s)

T1(s, a;φ) + T2(s, a;φ)

ωsa
+

T3(φ) + T4(φ)

min
s
ωs,π?(s)

,

where



T1(s, a;φ) =
2

∆2
sa

,

T2(s, a;φ) = max

(
16Var(s,a)[V ?φ ]

∆2
sa

,
6sp[V ?φ ]4/3

∆
4/3
sa

)
,

T3(φ) =
2

[∆min(φ)(1− γ)]2
,

T4(φ) ≤ 27

∆min(φ)2(1− γ)3
= O

(
Minimax lower bound

SA

)
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KLB-TS: Sampling rule

The optimal weights minimizing the upper-bound program:

ω(φ) = arg inf
ω∈Σ

max
(s,a):a 6=π?(s)

T1(s, a;φ) + T2(s, a;φ)

ωsa
+

T3(φ) + T4(φ)

min
s
ωs,π?(s)

are easy to compute !

Ensures that Pφ
(
∀(s, a) ∈ S ×A, lim

t→∞
Nsa(t)

t = ωs,a(φ)
)

= 1.
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KLB-TS: stopping rule

Figure: KL-Ball Stopping rule

We ensure that φ falls within the KL-ball with probability 1− δ, using
PAC bounds on the KL divergence..
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Algorithm: Guarantees

Theorem 3

KLB-TS has a sample complexity τδ satisfying:

for all δ ∈ (0, 1), Eφ[τδ] is finite and lim sup
δ→0

Eφ[τδ]
log(1/δ) ≤ 4U(φ), where:

U(φ) , inf
ω
U(φ, ω)

= O
(
S min

(
Var?max[V ?

φ ]

∆2
min(1− γ)2

,
1

∆2
min(1− γ)3

)

+
∑

s,a 6=π?(s)

1 + Var(s,a)[V ?
φ ]

∆2
sa

)
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Experiments

Figure: Asymptotic bound: S=A=2, γ = 0.5.
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Experiments

Figure: KLB-TS vs. BESPOKE. S=A=2, γ = 0.5.
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Experiments

Figure: KLB-TS vs. BESPOKE. S = 5,A = 10, γ = 0.7.
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Conclusion

1 Contrary to MAB, IT lower bound is hard to solve for MDPs.

2 We can derive problem-specific surrogates which :

Are explicit, depending on functionals of the MDP.
Have a corresponding allocation that is easy to compute.

3 Can be used to devise (Asymptocically) Matching algorithm.

4 First step towards understanding problem-specific ε-optimal policy
identification.
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Thanks !

Aymen Al Marjani Adaptive Sampling for BPI ICML 2021 21 / 21


	Introduction
	Information-Theoretical Lower Bound
	Upper bound of the characteristic time
	Algorithm Design
	Experiments
	Conclusion

