Adaptive Sampling for Best Policy Identification in MDPs

Aymen Al Marjani¹ joint work with Alexandre Proutiere²

¹ENS de Lyon

²KTH Royal Institute of Technology

 $38^{\rm th}$ International Conference on Machine Learning

Introduction

- 2 Information-Theoretical Lower Bound
- 3 Upper bound of the characteristic time
- 4 Algorithm Design
- 5 Experiments

How many samples does it take to learn an optimal policy in RL ?

- $\phi = <\mathcal{S}, \mathcal{A}, p_{\phi}, q_{\phi}, \gamma >$
 - **(**) S, A: **Finite** state and action spaces.

$\phi = <\mathcal{S}, \mathcal{A}, \mathbf{p}_{\phi}, \mathbf{q}_{\phi}, \gamma >$

- **(**) S, A: **Finite** state and action spaces.
- After choosing action a at state s the agent:
 - receives reward $R(s, a) \sim q_{\phi}(.|s, a)$ and mean $r(s, a) \triangleq \mathbb{E}_{q(.|s, a)}[R(s, a)].$
 - makes transition to $s' \sim p_{\phi}(.|s,a)$.

Figure: src:packtpub

$\phi = <\mathcal{S}, \mathcal{A}, \textit{p}_{\phi}, \textit{q}_{\phi}, \gamma >$

- **(**) S, A: **Finite** state and action spaces.
- After choosing action a at state s the agent:
 - receives reward $R(s, a) \sim q_{\phi}(.|s, a)$ and mean $r(s, a) \triangleq \mathbb{E}_{q(.|s, a)}[R(s, a)].$
 - makes transition to $s' \sim p_{\phi}(.|s,a).$
 - For simplicity, we assume q with support in [0, 1].

Figure: src:packtpub

 $\phi = < S, A, p_{\phi}, q_{\phi}, \gamma >$

• $\gamma \in [0, 1)$ is the discount factor.

$\phi = <\mathcal{S}, \mathcal{A}, \textit{p}_{\phi}, \textit{q}_{\phi}, \gamma >$

• $\gamma \in [0,1)$ is the discount factor.

• Identify a policy $\pi: \mathcal{S} \to \mathcal{A}$ maximizing the total discounted reward:

$$\pi_{\phi}^{\star} \in \arg\max_{\pi} V_{\phi}^{\pi}(s) = \mathbb{E}_{\phi} \bigg[\sum_{t=0}^{\infty} \gamma^{t} R(s_{t}^{\pi}, \pi(s_{t}^{\pi})) \bigg| s_{0} = s \bigg]$$

•
$$\delta$$
-PC algorithm: $\mathbb{P}_{\phi}(\widehat{\pi}_{\tau}^{\star} \neq \pi^{\star}) \leq \delta$.

$\phi = <\mathcal{S}, \mathcal{A}, \mathbf{p}_{\phi}, \mathbf{q}_{\phi}, \gamma >$

• $\gamma \in [0,1)$ is the discount factor.

• Identify a policy $\pi: \mathcal{S} \to \mathcal{A}$ maximizing the total discounted reward:

$$\pi_{\phi}^{\star} \in \arg\max_{\pi} V_{\phi}^{\pi}(s) = \mathbb{E}_{\phi} \bigg[\sum_{t=0}^{\infty} \gamma^{t} R(s_{t}^{\pi}, \pi(s_{t}^{\pi})) \bigg| s_{0} = s \bigg]$$

- δ -PC algorithm: $\mathbb{P}_{\phi}(\widehat{\pi}_{\tau}^{\star} \neq \pi^{\star}) \leq \delta$.
- Identify π^* using minimum number of samples!

• Assumption 1: $\pi^* \triangleq \pi^*_{\phi}$ is unique.

- Assumption 1: $\pi^* \triangleq \pi^*_{\phi}$ is unique.
- Generative Model: The agent has access to a simulator. At round t, she agent can query a sample *any* pair (s_t, a_t) . She then observes $(R_t, s'_t) \sim q_{\phi}(.|s_t, a_t) \otimes p_{\phi}(.|s_t, a_t)$. Next, she can choose *any* other pair (s_{t+1}, a_{t+1}) independently of her previous state.

Learning: be specific!

Two kinds of guarantees:

 Minimax over a set of MDPs Φ:

$$\inf_{\mathbb{A}:\delta\text{-PC}} \sup_{\phi \in \Phi} \mathbb{E}_{\phi,\mathbb{A}}[\tau_{\delta}]$$

Instance-specific: For a given φ:

$$\inf_{\mathbb{A}:\delta\text{-PC}} \mathbb{E}_{\phi,\mathbb{A}}[\tau_{\delta}]$$

Learning: be specific!

Two kinds of guarantees:

 Minimax over a set of MDPs Φ:

 $\inf_{\mathbb{A}:\delta\text{-PC}} \sup_{\phi \in \Phi} \mathbb{E}_{\phi,\mathbb{A}}[\tau_{\delta}]$

Instance-specific: For a given φ:

$$\inf_{\mathbb{A}:\delta\text{-PC}} \mathbb{E}_{\phi,\mathbb{A}}[\tau_{\delta}]$$

Learning: be specific!

Two kinds of guarantees:

 Minimax over a set of MDPs Φ:

 $\inf_{\mathbb{A}:\delta\text{-PC}} \sup_{\phi \in \Phi} \mathbb{E}_{\phi,\mathbb{A}}[\tau_{\delta}]$

Instance-specific: For a given φ:

$$\inf_{\mathbb{A}:\delta\text{-PC}} \mathbb{E}_{\phi,\mathbb{A}}[\tau_{\delta}]$$

• We seek algorithms that can adapt to the hardness of the instance.

Define:

- The set of alternative MDPs $Alt(\phi) = \{\psi : \pi^* \text{ is not optimal in } \psi\}.$
- Σ the simplex of \mathbb{R}^{SA} .
- $\operatorname{KL}_{\phi|\psi}(s,a) = \operatorname{KL}(q_{\phi}(s,a), q_{\psi}(s,a)) + \operatorname{KL}(p_{\phi}(s,a), p_{\psi}(s,a))$

Proposition 1

The sample complexity of any $\delta\text{-PC}$ algorithm satisfies: for any ϕ with a unique optimal policy,

$$\mathbb{E}_{\phi}[\tau] \ge T^{\star}(\phi) \log(1/2.4\delta),$$

where $T^{\star}(\phi)^{-1} = \sup_{\omega \in \Sigma} \inf_{\psi \in \mathsf{Alt}(\phi)} \sum_{s,a} \omega_{sa} \mathrm{KL}_{\phi|\psi}(s, a).$ (1)

IT Lower bound: Hard to solve !

• Alt(ϕ) and Alt_{s1a1}(ϕ) are not convex.

IT Lower bound: Hard to solve !

- Alt(ϕ) and Alt_{s1a1}(ϕ) are not convex.
- \implies The sub-problem $\inf_{\psi \in \mathsf{Alt}(\phi)} \sum_{s,a} \omega_{sa} \mathrm{KL}_{\phi|\psi}(s,a)$ is non-convex.

	MAB	MDP
Parameters	$\mu_1 > \ldots \ge \mu_K$	$(r(s,a),p(s,a))_{s,a}$
Objective	Identify	Identify
	$a^{\star} = rg\max_{a \in [K]} \mu_{a}$	$\pi^{\star} = rg\max_{\pi} \ (I - \gamma P_{\pi})^{-1} r_{\pi}$
Alternative	$\bigcup \left\{ \lambda : \lambda_{a} > \lambda_{1} \right\}$	$igcup = \{\psi: \ oldsymbol{Q}^{\pi^\star}_\psi(s,a) > V^{\pi^\star}_\psi(s)\}$
	$a \neq 1$	$s, a eq \pi^{\star}(s)$
instances	union of convex sets	Not union of convex sets
IT lower	Easy to solve	Hard to solve
bound		

Define the characteristic time: $T(\phi, \omega)^{-1} \triangleq \inf_{\psi \in Alt(\phi)} \sum_{s,a} \omega_{sa} KL_{\phi|\psi}(s, a).$

Upper bound: Idea

Define the characteristic time: $T(\phi, \omega)^{-1} \triangleq \inf_{\psi \in Alt(\phi)} \sum_{s,a} \omega_{sa} KL_{\phi|\psi}(s, a).$

Figure: Alt(ϕ): Non-convex boundary

Upper bound: Idea

Define the characteristic time: $T(\phi, \omega)^{-1} \triangleq \inf_{\psi \in Alt(\phi)} \sum_{s,a} \omega_{sa} KL_{\phi|\psi}(s, a).$

Figure: KL Ball

Define:

- The sub-optimality gap: $\Delta_{sa} = V^{\star}_{\phi}(s) Q^{\star}_{\phi}(s,a).$
- The minimum gap $\Delta_{\min} = \min_{s,a \neq \pi^{\star}(s)} \Delta_{sa}$.
- The variance of the value function $\operatorname{Var}_{(s,a)}[V_{\phi}^{\star}] = \mathbb{V}_{s' \sim p_{\phi}(.|s,a)}[V_{\phi}^{\star}(s)].$
- The span of the value function $\operatorname{sp}[V_{\phi}^{\star}] = \max_{s} V_{\phi}^{\star}(s) \min_{s} V_{\phi}^{\star}(s)$.

Upper bound of the characteristic time

Theorem 1 (Upper bound of minimal sample complexity)

For all vectors $\boldsymbol{\omega}$ in the simplex:

$$T(\phi,\omega) \leq U(\phi,\omega) \triangleq \max_{s,a \neq \pi^*(s)} \frac{T_1(s,a;\phi) + T_2(s,a;\phi)}{\omega_{sa}} + \frac{T_3(\phi) + T_4(\phi)}{\min \omega_{s,\pi^*(s)}},$$

$$\begin{cases}
T_1(s,a;\phi) = \frac{2}{\Delta_{sa}^2}, \\
T_2(s,a;\phi) = \max\left(\frac{16\operatorname{Var}_{(s,a)}[V_{\phi}^*]}{\Delta_{sa}^2}, \frac{6\operatorname{sp}[V_{\phi}^*]^{4/3}}{\Delta_{sa}^{4/3}}\right), \\
T_3(\phi) = \frac{2}{[\Delta_{\min}(\phi)(1-\gamma)]^2}, \\
T_4(\phi) \leq \frac{27}{\Delta_{\min}(\phi)^2(1-\gamma)^3} = \mathcal{O}\left(\frac{\operatorname{Minimax\ lower\ bound}}{SA}\right)
\end{cases}$$

• The optimal weights minimizing the upper-bound program:

$$\overline{\omega}(\phi) = \underset{\omega \in \Sigma}{\operatorname{arg inf}} \max_{(s,a): a \neq \pi^{\star}(s)} \frac{T_1(s,a;\phi) + T_2(s,a;\phi)}{\omega_{sa}} + \frac{T_3(\phi) + T_4(\phi)}{\min_{s} \omega_{s,\pi^{\star}(s)}}$$

are easy to compute !

• The optimal weights minimizing the upper-bound program:

$$\overline{\omega}(\phi) = \operatorname*{arg \, inf}_{\omega \in \Sigma} \max_{(s,a): a \neq \pi^{\star}(s)} \frac{T_1(s,a;\phi) + T_2(s,a;\phi)}{\omega_{sa}} + \frac{T_3(\phi) + T_4(\phi)}{\min_s \omega_{s,\pi^{\star}(s)}}$$

are easy to compute !

• Ensures that
$$\mathbb{P}_{\phi}\left(orall(s,a)\in\mathcal{S} imes\mathcal{A},\quad \lim_{t o\infty}rac{N_{sa}(t)}{t}=\overline{\omega}_{s,a}(\phi)
ight)=1.$$

KLB-TS: stopping rule

Figure: KL-Ball Stopping rule

KLB-TS: stopping rule

Figure: KL-Ball Stopping rule

• We ensure that ϕ falls within the KL-ball with probability $1 - \delta$, using PAC bounds on the KL divergence..

Theorem 3

KLB-TS has a sample complexity τ_{δ} satisfying: for all $\delta \in (0, 1)$, $\mathbb{E}_{\phi}[\tau_{\delta}]$ is finite and $\limsup_{\delta \to 0} \frac{\mathbb{E}_{\phi}[\tau_{\delta}]}{\log(1/\delta)} \leq 4U(\phi)$, where:

$$U(\phi) \triangleq \inf_{\omega} U(\phi, \omega)$$

= $\mathcal{O}\left(S \min\left(\frac{\operatorname{Var}_{\max}^{\star}[V_{\phi}^{\star}]}{\Delta_{\min}^{2}(1-\gamma)^{2}}, \frac{1}{\Delta_{\min}^{2}(1-\gamma)^{3}}\right)$
+ $\sum_{s,a \neq \pi^{\star}(s)} \frac{1 + \operatorname{Var}_{(s,a)}[V_{\phi}^{\star}]}{\Delta_{sa}^{2}}\right)$

Figure: Asymptotic bound: S=A=2, $\gamma = 0.5$.

Figure: KLB-TS vs. BESPOKE. $S = 5, A = 10, \gamma = 0.7$.

- **1** Contrary to MAB, IT lower bound is hard to solve for MDPs.
- **2** We can derive problem-specific surrogates which :
 - Are *explicit*, depending on functionals of the MDP.
 - Have a corresponding allocation that is easy to compute.
- Solution 2018 Can be used to devise (Asymptocically) Matching algorithm.
- First step towards understanding problem-specific ε-optimal policy identification.

Thanks !