Unsupervised Embedding Adaptation via Early-Stage Feature Reconstruction for Few-Shot Classification

<u>Dong Hoon Lee</u> Sa

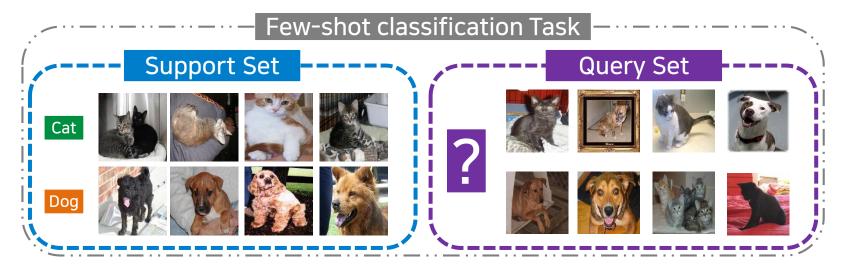
Sae-Young Chung

Korea Advanced Institute of Science and Technology (KAIST)

ICML 2021

Background. Few-shot classification problem

- Few-shot image classification problem
 - A small labeled support set (S) and unlabeled query set (Q)
 - Goal: classify query samples by few examples in the support set.



- + Transductive setting
 - Allow to utilize all the unlabeled query samples together to make an inference.

Q. Can we leverage (deep) unsupervised learning for few-shot classification?

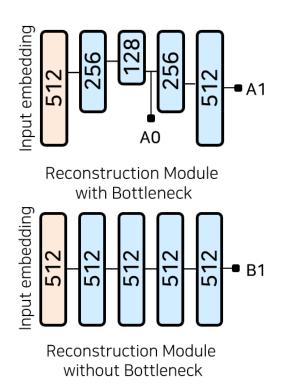
Method - 1. Feature reconstruction

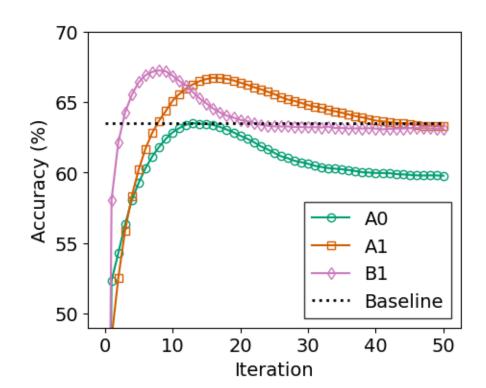
- We study how unsupervised learning can contribute to few-shot classification.
- Unsupervised learning: Feature reconstruction

$$\mathcal{L}_{FR} = \frac{1}{|S \cup Q|} \sum_{z \in S \cup Q} d_{\cos}(z, g_{\phi}(z))$$

 g_{ϕ} : is a reconstruction module (4-layer fully connected NN)

We specifically focus on "embedding adaptation"





Method - 1. Feature reconstruction

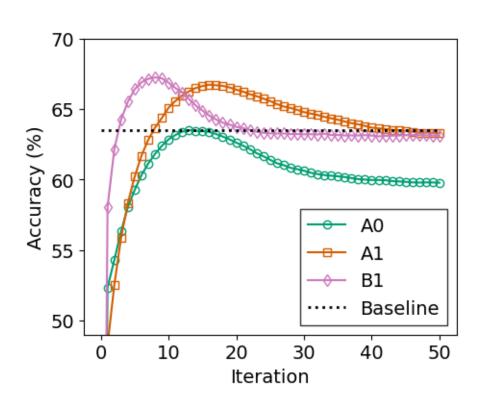
- We study how unsupervised learning can contribute to few-shot classification.
- Unsupervised learning: Feature reconstruction

$$\mathcal{L}_{FR} = \frac{1}{|S \cup Q|} \sum_{z \in S \cup Q} d_{\cos}(z, g_{\phi}(z))$$

 g_{ϕ} : is a reconstruction module (4-layer fully connected NN)

We specifically focus on "embedding adaptation"

- The figure shows an interesting behavior that the accuracies with new embeddings initially increase then decrease.
- 2. The peak accuracy of B1 exceeds the baseline accuracy of the original embedding.



Method - 2. LID based early stopping

- Cause of the behavior?
 - Can be explained with the property of DNN training[1]

"DNNs learn to generalize before memorizing"

=> Early retained generalizable features are more likely to be task-relevant in classification.

- Local Intrinsic Dimensionality (LID) based early stopping
 - Based on our hypothesis and prior works[2], we propose to use LID as the early stopping criteria of our method.

$$\widehat{\text{LID}}(\phi) = -\sum_{z \in S \cup Q} \left[\frac{1}{m} \sum_{i=1}^{m} \ln \frac{r_i(g_{\phi}^{L-2}(z))}{r_m(g_{\phi}^{L-2}(z))} \right]^{-1}$$

 g_{ϕ}^{L-2} : is the hidden representation of the second-to-last layer of g_{ϕ}

 $r_i(g_\phi^{L-2}(z))$: distance between $g_\phi^{L-2}(z)$ and its i-th nearest neighbor

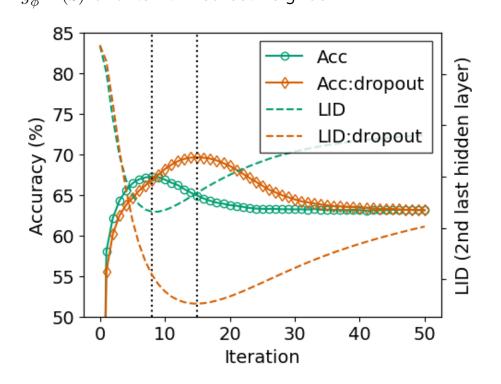
Method - 2. LID based early stopping

- Local Intrinsic Dimensionality (LID) based early stopping
 - Based on our hypothesis and prior works, we propose to use LID as the early stopping criteria of our method.

$$\widehat{\text{LID}}(\phi) = -\sum_{z \in S \cup Q} \left[\frac{1}{m} \sum_{i=1}^{m} \ln \frac{r_i(g_{\phi}^{L-2}(z))}{r_m(g_{\phi}^{L-2}(z))} \right]^{-1}$$

 g_ϕ^{L-2} : is the hidden representation of the second-to-last layer of g_ϕ $r_i(g_\phi^{L-2}(z))$: distance between $g_\phi^{L-2}(z)$ and its i-th nearest neighbor

- We experimented the relationship between the LID and accuracy during reconstruction training.
- We find that LID can be used to find the early stopping time of the best possible new embeddings.
 - Early stop when LID started to raise.



Method, ESFR

- We propose Early-Stage Feature Reconstruction (ESFR) method that finds taskadapted embeddings.
 - Use the observed behavior that "Early retained features are more generalizable."
 - Consists of (1) Feature reconstruction training + (2) LID based early stopping

Algorithm 1 ESFR **Input:** embedding support set S_f , embedding query set Q_f , and few-shot classifier Alg : $S_f, Q_f \to \widehat{Y}_Q$ Initialize: $\phi^{i=1:N_e}$ for i=1 to $N_{\rm e}$ do $\operatorname{prev_lid} = \widehat{\operatorname{LID}}(\phi_0^i)$ **Initialize:** optimizer for j = 0 to MAX_ITERATION do $\phi^i_{j+1} \leftarrow \phi^i_j - \nabla_{\phi^i_j} \mathcal{L}(\phi^i_j)$ from equation 5 or 7 ullet $lid = \widehat{LID}(\phi_{j+1}^i)$ if lid > prev_lid then $\phi_*^i = \phi_{i+1}^i$ end if $prev_lid = lid$ end for end for $S^{\text{ESFR}} = \{(z', y) | z' = \frac{1}{N_{\text{e}}} \sum_{i=1}^{N_{\text{e}}} g_{\phi_*^i}(z), (z, y) \in S_f\} \bullet - Q^{\text{ESFR}} = \{z' | z' = \frac{1}{N_{\text{e}}} \sum_{i=1}^{N_{\text{e}}} g_{\phi_*^i}(z), z \in Q_f\} \bullet - Q^{\text{ESFR}} = \{z' | z' = \frac{1}{N_{\text{e}}} \sum_{i=1}^{N_{\text{e}}} g_{\phi_*^i}(z), z \in Q_f\} \bullet - Q^{\text{ESFR}} = \{z' | z' = \frac{1}{N_{\text{e}}} \sum_{i=1}^{N_{\text{e}}} g_{\phi_*^i}(z), z \in Q_f\} \bullet - Q^{\text{ESFR}} = \{z' | z' = \frac{1}{N_{\text{e}}} \sum_{i=1}^{N_{\text{e}}} g_{\phi_*^i}(z), z \in Q_f\} \bullet - Q^{\text{ESFR}} = \{z' | z' = \frac{1}{N_{\text{e}}} \sum_{i=1}^{N_{\text{e}}} g_{\phi_*^i}(z), z \in Q_f\} \bullet - Q^{\text{ESFR}} = \{z' | z' = \frac{1}{N_{\text{e}}} \sum_{i=1}^{N_{\text{e}}} g_{\phi_*^i}(z), z \in Q_f\} \bullet - Q^{\text{ESFR}} = Q^{\text$ Output: $\widehat{Y}_Q = \text{Alg}(S^{\text{ESFR}}, Q^{\text{ESFR}})$

Dropout perturbation

: based on our hypothesis

$$\mathcal{L}_{FR}(\phi) = \frac{1}{|S \cup Q|} \sum_{z \in S \cup Q} \mathbb{E}[d_{\cos}(z, g_{\phi}(z \odot \mu))]$$

2 Embedding ensemble

: to reduce the variance by random initialization

To make our method solid: 1 2

→ ESFR is used as a plug and play module

Experiment. Improvement by ESFR

- ESFR consistently improves baseline few-shot classification methods in all settings
 - Methods (Linear, NN, BD-CSPN†), various datasets (mini-/tiered-ImageNet, and CUB),
 backbones (ResNet18/WidResNet/Conv), Settings (1- and 5-shot)
 - ESFR can offer a complementary improvement to semi-supervised approaches.

		mini-ImageNet		<i>tiered-</i> In	nageNet	
Backbone	Method	1-shot	5-shot	1-shot	5-shot	
ResNet-18	Linear	62.45	79.32	68.49	83.77	-
	+ ESFR	70.38+7.93	81.6+2.28	76.98+8.49	86.09+2.32	
	NN	64.04	79.71	71.60	84.62	-
	+ ESFR	70.94+6.9	81.61+1.9	77.44+5.84	85.84+1.22	
	BD-CSPN†	70.00	82.36	77.28	86.55	-
	+ ESFR	73.98+3.98	82.32-0.04	80.13+2.85	86.34-0.21	
	+ ESFR-Semi		82.89+0.53		86.83+0.28	ESFR-Semi:
WRN-28-10	Linear	64.53	80.81	69.78	84.91	
	+ ESFR	73.33+8.8	83.65+2.84	78.57 +8.79	87.37+2.46	Add additional
	NN	66.73	81.85	72.97	85.74	support classification
	+ ESFR	74.01+7.28	83.58+1.73	79.13+6.16	87.08+1.34	loss during
	BD-CSPN†	72.74	84.14	78.89	87.72	reconstruction
	+ ESFR	76.84+4.10	84.36+0.22	81.77+2.88	87.61-0.11	
	+ ESFR-Semi		84.97+0.83		88.10+0.38	training.

Experiment. Comparison to prior works

Table 2. Comparison with state-of-the-art methods of 5-way 1- and 5-shot accuracy (in %) on *mini*-ImageNet, *tiered*-ImageNet and CUB. The best results are reported in **bold**.

		mini-ImageNet		tiered-ImageNet		CUB	
Method	Backbone	1-shot	5-shot	1-shot	5-shot	1-shot	5-shot
MAML (Finn et al., 2017)	ResNet-18	49.61	65.72	-	-	68.42	83.47
Chen (Chen et al., 2019)	ResNet-18	51.87	75.68	-	-	67.02	83.58
ProtoNet (Snell et al., 2017)	ResNet-18	54.16	73.68	-	-	72.99	86.64
TPN (Liu et al., 2019)	ResNet-12	59.46	75.65	-	-	-	-
TEAM (Qiao et al., 2019)	ResNet-18	60.07	75.90	-	-	80.16	87.17
SimpleShot (Wang et al., 2019)	ResNet-18	63.10	79.92	69.68	84.56	70.28	86.37
CTM (Li et al., 2019)	ResNet-18	64.12	78.64	68.41	84.28	-	-
FEAT (Ye et al., 2020)	ResNet-18	66.78	82.05	70.80	84.79	-	-
BD-CSPN (Liu et al., 2020)	ResNet-18	70.00	82.36	77.28	86.55	78.89	88.70
LaplacianShot (Ziko et al., 2020)	ResNet-18	72.11	82.31	78.98	86.39	80.96	88.68
BD-CSPN + ESFR (Ours)	ResNet-18	73.98	82.32	80.13	86.34	82.68	88.65
BD-CSPN + ESFR-Semi (Ours)	ResNet-18	-	82.89	-	86.83	-	89.10
LEO (Rusu et al., 2019)	WRN	61.76	77.59	66.33	81.44	-	-
wDAE-GNN (Gidaris & Komodakis, 2019)	WRN	62.96	78.85	68.18	83.09	-	-
FEAT (Ye et al., 2020)	WRN	65.10	81.11	70.41	84.38	-	-
Tran. Baseline (Dhillon et al., 2020)	WRN	65.73	78.40	73.34	85.50	-	-
SimpleShot (Wang et al., 2019)	WRN	65.87	82.09	70.90	85.76	-	-
SIB (Hu et al., 2020)	WRN	70.0	79.2	-	-	-	-
BD-CSPN (Liu et al., 2020)	WRN	72.74	84.14	78.89	87.72	-	-
LaplacianShot (Ziko et al., 2020)	WRN	74.86	84.13	80.18	87.56	-	-
BD-CSPN + ESFR (Ours)	WRN	76.84	84.36	81.77	87.61	-	-
BD-CSPN + ESFR-Semi (Ours)	WRN	-	84.97	-	88.10	-	-

- State-of-the-art performance on all mini-/tiered-ImageNet and CUB datasets.
- For 1-shot, 1.2%~2.0% improvements in accuracy over the previous best performing.

Summary

- In this work.
 - We propose unsupervised embedding adaptation method: ESFR.
 - Experiments show that our method consistently improves the baseline methods and achieves the new state-of-the-art.
 - We show that deep unsupervised learning can offer complementary and comparable improvement to previous few-shot classification methods.
 - We hope that our work will become a starting point for future unsupervised learning studies on few-shot classification.

Thanks for listening!

Speaker: Dong Hoon Lee

donghoonlee [at] kaist.ac.kr

https://github.com/movinghoon/ESFR