When Does Data Augmentation Help With Membership Inference Attacks?

Yiğitcan Kaya, Tudor Dumitraş

University of Maryland, College Park ICML 2021 - Virtual

What is a membership inference attack?

- Deep learning models leak information about their training sets.
- This leakage allows an attacker to infer whether a sample was in a model's training set by observing the model's output.
 - This is known as a black-box membership inference attack (MIA).
 - A severe privacy risk.

Overfitting implies risk of MIAs

- Overfitting is a sufficient (*but not necessary*) condition for MIAs [1].
- Overfitting causes a rift between the model's performance on the training set and on the testing set.
 - Known as *generalization gap*.
 - This gives leverage to the MIAs.

[1] Privacy Risk in Machine Learning: Analyzing the Connection to Overfitting, Yeom et al.

Data augmentation reduces overfitting

- Differential privacy provides formal guarantees against the MIA risk.
 - Causes significant accuracy loss over a non-private model.
 - Accuracy is a key factor for practitioners.
- Data augmentation is commonly used to fight overfitting and to improve the accuracy.
 - There are many augmentation techniques.
 - They are known to shrink the generalization gap.
 - No work systematically studies how augmentation fares against MIAs.

We conducted an empirical study on **7** popular augmentation mechanisms and evaluated their effectiveness against **3** black-box MIAs.

Finding #1 – Augmentation for accuracy is ineffective against MIAs

- Applying augmentation to maximize the model's accuracy, we see
 - Augmentation can boost the accuracy up to 10% over baseline models.
 - Label smoothing boosts the accuracy and the success of MIA attacks simultaneously.
 - No augmentation mechanism can reduce the MIA risk by more than 50% over the baseline.

Augmentation for the sake of accuracy still leaves the models vulnerable.

Finding #2 – High-intensity augmentation mitigates MIAs but hurts the accuracy

- Applying augmentation with higher intensities (e.g., cropping 90% of the image), we see
 - This leads to an accuracy drop.
 - Within 25% accuracy drop, augmentation reduces MIA success more than 85%-100%.
 - <u>Most effective</u>: Random cropping and Cutout
 - <u>Moderately effective</u>: Mixup and Soft labels
 - <u>Least effective</u>: Gaussian augmentation and label smoothing

Augmentation is effective against MIAs when it hurts the model's accuracy.

Finding #3 – Label smoothing is a privacy risk

- All mechanisms except for label smoothing reduce the MIA success when they increase the accuracy.
- Label smoothing consistently increases the accuracy and makes MIAs more successful.
 - 5% accuracy boost -> 40% more MIA success
 - Models overfit on smooth labels and start producing more uniform outputs on training samples.
 - This discrepancy gives more leverage to MIAs.

Smaller generalization gap does not mean less MIA risk in the case of label smoothing.

Finding #4 – High-intensity augmentation is like early stopping

- Using our simple Loss-Rank-Correlation metric, we compare applying high-intensity augmentation to training the model for only a few epochs.
 - We see the high similarities between across the board.
 - Training for a few epochs hurts the accuracy similar to high-intensity augmentation.

Simply reducing the number of training epochs might be just as effective as applying augmentation to mitigate MIAs.

Code is available @

https://github.com/yigitcankaya/augmentation_mia

Ultimately, there is **no free lunch** in augmentation against membership inference attacks...

Contact Info

http://www.cs.umd.edu/~yigitcan/

