Data augmentation for deep learning based accelerated MRI reconstruction with limited data

Zalan Fabian, Reinhard Heckel, Mahdi Soltanolkotabi

ICML2021

Challenges of DL in medical imaging

• Deep learning models are extremely data-hungry

- Data collection for medical tasks is challenging:
 - 1. **Cost**: expensive instruments, time of experts
 - 2. **Time**: long acquisition time (MRI: 60 mins / scan)
 - 3. **Health**: ionizing radiation exposure (CT, PET)
 - 4. Data curation: patient confidentiality, data compatibility

How do we train with limited data?

MRI reconstruction

Data augmentation in classification: straightforward

Data augmentation in MRI reconstruction: non-trivial

1. Output is **not** invariant to transformations

fully sampled data

- - augmented measurements

augmented target

2. Distribution shift due to noise

$$x = x^* + n$$
 \longrightarrow $x_{aug.} = \mathscr{D}x^* + \mathscr{D}n$
augmented signal augmented noise!

MRAugment pipeline

Results on various datasets

Robustness experiments

Unseen scanners

Unseen anatomies

Hallucinations

2% train	no DA	DA
$3T \rightarrow 3T$	0.8646	0.9049
$3T \rightarrow 1.5T$	0.8241	0.8551
$1.5T \rightarrow 3T$	0.8174	0.8913
1000 train	no DA	

100% train	no DA	DA
$3T \rightarrow 3T$	0.9177	0.9185
$3T \rightarrow 1.5T$	0.8686	0.8690
$1.5T \rightarrow 3T$	0.9043	0.9062

MRAugment

https://github.com/MathFLDS/MRAugment