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NO widespread agreement among philosophers or society

they behave eth

 Agents should take into account uncertainty about ethics

 As agents are deployed in the real world, |
 Which version of ethics should they follow??



Framework for Moral
Uncertainty

e Standard MDP framework except for rewards

e Moral theories define a choice-worthiness
function Wi(s, a, s’)

- Analogous to the reward function, but one W, function per theory

e Each moral theory has a credence Ci: the degree
of belief in that theory
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T h e Tro I I ey P ro b I e m I'he trolley problem as a griaworld

 An out-of-control trolley is about to harm
several people

* [he agent can redirect it, but doing so will
harm a bystander

e Example ethical theories:

- Utilitarianism: minimize overall harm (prefers switching)

Deontology: do not actively harm (prefers doing nothing)

- Many more theories
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Incomparability

e Choice-worthiness functions are usually incomparable across theories

- A credence-weighted sum of choice-worthiness functions might untairly favor some theories

e Similar problem to multi-objective RL, but we want a single compromise policy that
meets the requirements of moral uncertainty

o Similar to multi-agent RL in that theories “compete” for action selection, but how
should they compete?



Proportional Say

Principle of Proportional Say: the “influence” of a theory should be proportional to its
credence

It suggests voting to make decisions under moral uncertainty: each theory | produces
a vote Vi(s, a) € R for action a at state s

At each step, the agent chooses the action with the highest credence-weighted vote:

r(s) = argmax Z C.V(s,a)

We must set voting constraints that equalize influence
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Variance-Sarsa
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EXxperiments

 \We identify desirable properties for voting systems in moral uncertainty, and test
them experimentally in gridworld trolley problems
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Conclusion

We presented an framework for moral uncertainty in RL along with initial algorithms
Both of our algorithms involve significant tradeoftfs

Tradeoffs are inevitable when designing voting systems (Arrow’s Impossibility Theorem),
but more work Is needed to investigate them in moral uncertainty

Future work could also Iinvestigate our algorithms at scale, design or learn choice-
worthiness functions, or even investigate other approaches entirely

We hope to inspire some of you to investigate this important and under-studied problem

Come to our poster session to learn more!
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