
Data Science and Engineering Lab

Elastic Graph Neural Networks

Xiaorui Liu
Joint work with Wei Jin (co-first author),
Yao Ma, Yaxin Li, Hua Liu, Yiqi Wang,

Ming Yan & Jiliang Tang

Michigan State University

ICML 2021, July 21st



Data Science and Engineering Lab

Data as Graphs

Social Graphs Transportation Graphs Brain Graphs

Web Graphs Molecular Graphs Gene Graphs
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Machine Learning on Graphs

Traditional
i.i.d. data

Classification

Clustering 

…..

Ranking

Graph Features/Representation

Representation Learning on Graphs
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Graph Neural Networks
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Feature Updating
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Neural Message Passing for Quantum Chemistry, Justin Gilmer et al, ICML 2017
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A Unified View on Message Passing
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“Nodes are similar to their neighbors”

“Noisy Signal” Graph “Clean Signal”

A unified view on graph neural networks as graph signal denoising, Yao Ma, Xiaorui Liu et al, 2020

Close to the input Smoothness prior
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A unified view on graph neural networks as graph signal denoising, Yao Ma, Xiaorui Liu et al, 2020

A Unified View on Message Passing

Optimization Solver Message PassingDefine Prior

• GCN

• PPNP

• APPNP/GCNII

Example

Close to the input Smoothness prior
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Global Smoothness

• GCN

• PPNP

• APPNP/GCNII

Close to the input Smoothness prior

These MP schemes enforce global smoothness
shared across the whole graph

Example
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Local Smoothness

Noise graph structure

Can we enhance local smoothness adaptively
across different region over the graph?
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Adversarial graph attack

Graph Structure Learning for Robust Graph Neural Networks,
Wei Jin, Yao Ma, Xiaorui Liu, et al, KDD 2020. 

Feature smoothnessGraph attack

Local Smoothness
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Nonparametric regression (univariate)

K = 0 K = 1 K = 2

Trend Filtering

Adaptive piecewise polynomial estimation via trend filtering, Ryan Tibshirani, Annals of Statistics, 2014

Adapt to the local level of smoothness

𝑳𝟏 Trend filtering, S.-J. Kim et al, SIAM Review, 2009
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GTF

Incident matrix

Graph Trend Filtering

Trend filtering on graphs, Yu-Xiang Wang et al, JMLR 2016
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Local smoothness adaptivity: piecewise behavior

Graph Trend Filtering

Trend filtering on graphs, Yu-Xiang Wang et al, JMLR 2016
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Elastic Graph Signal Estimator

New smoothness prior

Coupling multi-dimensionality

Close to the input Smoothness prior
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Elastic Graph Signal Estimator

Option I

Option II

Optimization Solver Message PassingDefine Prior
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Elastic Graph Signal Estimator

Saddle-point reformulation

A simple and efficient primal dual solver
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Elastic Message Passing

• λ! = 0: standard message passing in Y
• γ = !

!"#"
, λ$= !

%
− 1:

• γ = !
!"#"

, λ$= +∞:

• λ" > 0: accumulate )∆)Z to promote sparsity in )∆F and preserve jump edge

Interpretation
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Elastic Message Passing

γ = !
!"#"

, β = !
$&In this work, we fix
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Elastic GNNs

• Follow the decoupled architecture as PPNP but can be used in
coupled architecture as well

• EMP is composed by simple and efficient operations, which is
friendly to efficient and back-propagation training

• Hyperparameters λ! and λ$ provide better smoothness adaptivity

• Doesn’t require a very large K



Data Science and Engineering Lab

Performance on benchmark datasets

Semi-supervised learning for node classification

ElasticGNN: 𝐋𝟐𝟏+𝐋𝟐
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Piecewise constant prior

Better local smoothness adaptivity

Performance on benchmark datasets
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Convergence of EMP

Performance on benchmark datasets

Impact of K
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Basic GNNs < Elastic GNNs

Performance under adversarial attack
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L$ < L$! in most cases

Performance under adversarial attack
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L! + L$ < L$! + L$ in most cases

Performance under adversarial attack
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Conclusion

Future directions
• Other node level tasks such as link prediction, community detection, and

outlier detection
• Graph level tasks such as graph classification and graph similarity measure
• Higher-order graph difference operators
• EMP as a building block in other GNN architectures

Summary
• Introduce L! based graph smoothing in the design of GNNs, for the first time
• Derive a novel and general message passing scheme, i.e., EMP
• Develop a family of GNNs, i.e., Elastic GNNs
• Demonstrate better smoothness adaptivity of Elastic GNNs
• Elastic GNNs are intrinsically more robust to adversarial graph attacks and

compatible with any other defense strategies

Code: https://github.com/lxiaorui/ElasticGNN

https://github.com/lxiaorui/ElasticGNN
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