Adaptive Newton Sketch

Jonathan Lacotte, Yifei Wang and Mert Pilanci

Stanford University

Adaptive Newton Sketch

- A randomized algorithm with quadratic convergence rate for convex optimization problems:

$$
\min _{x \in \mathbb{R}^{d}}\left\{f(x):=f_{0}(x)+g(x)\right\}
$$

- f_{0} : self-concordant and convex
- g : self-concordant and μ-strongly convex
- Perform a randomized Newton's step using a random projection of the Hessian:

$$
\begin{aligned}
H_{S}(x) & =\left(\nabla^{2} f_{0}(x)^{\frac{1}{2}}\right)^{T} S^{T} S \nabla^{2} f_{0}(x)^{\frac{1}{2}}+\nabla^{2} g(x) \\
x_{+} & =x+s H_{S}(x)^{-1} \nabla f(x)
\end{aligned}
$$

- $\nabla^{2} f_{0}(x)^{\frac{1}{2}} \in \mathbb{R}^{n \times d}$: Hessian matrix square root
- $S \in \mathbb{R}^{m \times n}$: sketching matrix with sketching dimension m

Example of loss function and matrix square root

- $f_{0}(x)=\sum_{i=1}^{n} \ell_{i}\left(a_{i}^{\top} x\right)$.
- In this case, a suitable Hessian matrix square root is given by the $n \times d$ matrix

$$
\nabla^{2} f_{0}(x)^{1 / 2}=\operatorname{diag}\left(\ell_{i}^{\prime \prime}\left(a_{i}^{\top} x\right)^{1 / 2}\right) A
$$

- $g(x)$ can be ℓ_{p}-norms with $p>1$ or approximations of ℓ_{1}-norm.

Our contribution

- Prior works on sketching require that $m \gtrsim d$ (the cost to solve the linear system is $O\left(d^{3}\right)$).
- Sketching dimension m can be as small as the effective dimension \bar{d}_{e} of the Hessian matrix, where

$$
\bar{d}_{\mathrm{e}}=\max _{x} \operatorname{tr}\left(\nabla^{2} f_{0}(x)\left(\nabla^{2} f_{0}(x)+\mu I_{d}\right)^{-1}\right)
$$

The cost to solve the linear system is $O\left(d d_{\mathrm{e}}^{2}\right)$.

- Propose an adaptive sketch size algorithm with quadratic convergence rate without prior knowledge of the effective dimension.
- Achieve state-of-the-art computational complexity to achieve a δ-accurate solution

$$
\mathcal{O}\left(n d \log \left(\bar{d}_{\mathrm{e}}\right) \log \left(\frac{d}{\delta}\right) \log \left(\log \left(\frac{d}{\delta}\right)\right)\right)
$$

Computational complexities comparison

Table: Complexity to achieve δ-accurate solution.

Algorithm	Time complexity	Sketch size	Proba.
Accelerated SVRG	$(n d+d \sqrt{\kappa n}) \log (1 / \delta)$	-	1
Newton method	$n d^{2} \log (\log (1 / \delta))$	-	1
Newton sketch	$n d \log (d) \log (1 / \delta)$	d	$1-\frac{1}{d}$
Adaptive Newton sketch	$n d \log \left(\bar{d}_{\mathrm{e}}\right) \log \left(\frac{d}{\delta}\right) \log \left(\log \left(\frac{d}{\delta}\right)\right)$	$\frac{d}{\delta}\left(\bar{d}_{\mathrm{e}}+\log \left(\frac{d}{\delta}\right) \log \left(\bar{d}_{\mathrm{e}}\right)\right)$	$1-\frac{1}{\bar{d}_{\mathrm{e}}}$

Adaptive Newton sketch

Same idea as for convex quadratic objectives. Start with $m_{0}=1, x_{0} \in \mathbb{R}^{d}$ and $S_{0} \in \mathbb{R}^{m_{0} \times n}$. At each iteration:

- Compute $x_{t+1}=x_{t}-\mu_{t} H_{S_{t}}^{-1} \nabla f\left(x_{t}\right)$.
- Sample $S_{t+1} \in \mathbb{R}^{m_{t} \times n}$. Form and factorize $H_{S_{t+1}}$.
- Compute improvement ratio $\widetilde{r}_{t}=\widetilde{\delta}_{t+1} / \widetilde{\delta}_{t}$ where

$$
\widetilde{\delta}_{t}=\nabla f\left(x_{t}\right)^{\top} H_{S_{t}}^{-1} \nabla f\left(x_{t}\right) .
$$

- If \widetilde{r}_{t} small enough, accept update x_{t+1}. Otherwise, set $x_{t+1}=x_{t}$, double sketch size $m_{t+1}=2 m_{t}$ and sample new $S_{t+1} \in \mathbb{R}^{m_{t+1} \times n}$.

Numerical results

Numerical results

w7a. kernel matrix. $n=12000, d=12000, \mu=10$.

