
Latent Programmer:
Discrete Latent Codes for Program Synthesis

Joey Hong
David Dohan
Rishabh Singh
Charles Sutton
Manzil Zaheer

Program Synthesis
Goal: Automatically generate programs given some specification that humans can
easily provide, i.e. input-output (IO) examples or natural language descriptions

Program Synthesis
Goal: Automatically generate programs given some specification that humans can
easily provide, i.e. input-output (IO) examples or natural language descriptions

Example 1: IO → String Transformation

1. “Mason Smith” ￫ “Smith M”
2. “Henry Myers” ￫ “Myers H”
3. “Barry Underwood” ￫ “Underwood B”
4. “sandy Jones” ￫ “Jones S”

GetToken_PROP_CASE_2 | “ ” | ToCase_UPPER(GetToken_CHAR_1)

Program Synthesis
Goal: Automatically generate programs given some specification that humans can
easily provide, i.e. input-output (IO) examples or natural language descriptions

Example 2: Natural Language → Python Function

“return a list of words in the string s”

Neural Program Synthesis

Encoder

Latent Space

Z Decoder

Y’

X

Beam-B
Search

Devlin et al., 2017

e.g. RNN with Attention,
Transformer

Neural Program Synthesis

Problem: Seq-to-seq networks do very well on simple tasks, but fail to infer more
complicated programs.

Encoder

Latent Space

Z Decoder

Y’

X

Beam-B
Search

Devlin et al., 2017

e.g. RNN with Attention,
Transformer

Two-Level Search: Motivation
Example problem: Find string transformation that maps inputs to outputs

1. “Jacob,Ethan,James 11” ￫ “11:J.E.J.”
2. “Elijah,Daniel,Aiden 3162” ￫ “3162:E.D.A”
3. “Rick,Oliver,Mia 26” ￫ “26:R.O.M.”
4. “Mark,Ben,Sam 510” ￫ “510:M.B.S.”

How might a person solve this problem?

Example problem: Find string transformation that maps inputs to outputs

1. “Jacob,Ethan,James 11” ￫ “11:J.E.J.”
2. “Elijah,Daniel,Aiden 3162” ￫ “3162:E.D.A”
3. “Rick,Oliver,Mia 26” ￫ “26:R.O.M.”
4. “Mark,Ben,Sam 510” ￫ “510:M.B.S.”

Intuition: People would first construct a high-level plan for the program, then fills in
details of the program based on the plan.

Two-Level Search: Motivation

Example problem: Find string transformation that maps inputs to outputs

1. “Jacob,Ethan,James 11” ￫ “11:J.E.J.”
2. “Elijah,Daniel,Aiden 3162” ￫ “3162:E.D.A”
3. “Rick,Oliver,Mia 26” ￫ “26:R.O.M.”
4. “Mark,Ben,Sam 510” ￫ “510:M.B.S.”

Number | 1st Initial | 2nd Initial | 3rd initial (High-level plan)

GetToken_NUMBER_1 | “:” | GetToken_ALL_CAPS_1 | “.” |
GetToken_ALL_CAPS_2 | “.” | GetToken_ALL_CAPS_3 (Low-level program)

Two-Level Search: Motivation

Two-Level Search: Plans
In two-level search, we consider generating high-level plan, then conditioned on
the plan, perform low-level search over programs.

Two-Level Search: Plans
In two-level search, we consider generating high-level plan, then conditioned on
the plan, perform low-level search over programs.

Question: How do we represent plans? Answer: A sequence of discrete tokens.

● Why discrete? Because we can apply standard combinatorial search (i.e.
beam search) on the plan space.

Two-Level Search: Plans
In two-level search, we consider generating high-level plan, then conditioned on
the plan, perform low-level search over programs.

Question: How do we represent plans? Answer: A sequence of discrete tokens.

● Why discrete? Because we can apply standard combinatorial search (i.e.
beam search) on the plan space.

Example 1:

Last Initial | First Name GetToken | GetToken (Program Sketch)

Murali et al., 2018

In two-level search, we consider generating high-level plan, then conditioned on
the plan, perform low-level search over programs.

Question: How do we represent plans? Answer: A sequence of discrete tokens.

● Why discrete? Because we can apply standard combinatorial search (i.e.
beam search) on the plan space.

Example 2:

Last Initial | First Name
GetToken_<HOLE>_<HOLE> | GetToken_WORD_<HOLE> (Program Sketch)

Nye et al., 2019

Two-Level Search: Plans

In two-level search, we consider generating high-level plan, then conditioned on
the plan, perform low-level search over programs.

Question: How do we represent plans? Answer: A sequence of discrete tokens.

● Why discrete? Because we can apply standard combinatorial search (i.e.
beam search) on the plan space.

Example 3 (this work):

Last Initial | First Name TOK_2 | TOK_8 (Latent Code)

Two-Level Search: Plans

Latent Codes
We consider plans that are latent codes, where each token is a discrete latent
variable in some learned latent space.

Latent Codes
We consider plans that are latent codes, where each token is a discrete latent
variable in some learned latent space.

● Latent codes provide generality and flexibility. The model can assign arbitrary
meanings to tokens in the latent space.

Latent Codes
We consider plans that are latent codes, where each token is a discrete latent
variable in some learned latent space.

● Latent codes provide generality and flexibility. The model can assign arbitrary
meanings to tokens in the latent space.

● How is it learned? Using a supervised technique where a discrete
autoencoder generates intermediate latent code targets for the end-to-end
prediction task. We consider using a VQ-VAE as the autoencoder (similarly
done in Kaiser et al., 2018).

Latent Programmer

Y

Latent Predictor

Program Encoder

Latent Codes

Z’

Z

Latent Program
Decoder

Y’

 = train only

X

Quantize

Beam-L
Search

Beam-[B/L]
Search

Discrete bottleneck: e.g.
VQ-VAE (Kaiser et al., 2018)

Two-level beam search

Latent Programmer

Y

Latent Predictor

Program Encoder

Latent Codes

Z’

Z

Latent Program
Decoder

Y’

 = train only

X

Quantize

Beam-L
Search

Beam-[B/L]
Search

Discrete bottleneck:
e.g. VQ-VAE

Two-level beam search

Discrete bottleneck: e.g.
VQ-VAE (Kaiser et al., 2018)

Training Loss 1: Fit Y’ to Y using Z (autoencoder loss)

Latent Programmer

Y

Latent Predictor

Program Encoder

Latent Codes

Z’

Z

Latent Program
Decoder

Y’

 = train only

X

Quantize

Beam-L
Search

Beam-[B/L]
Search

Discrete bottleneck:
e.g. VQ-VAE

Two-level beam search

Discrete bottleneck: e.g.
VQ-VAE (Kaiser et al., 2018)

Training Loss 1: Fit Y’ to Y using Z (autoencoder loss)

Training Loss 2: Fit Z’ to Z (latent prediction loss)

Latent Programmer

Y

Latent Predictor

Program Encoder

Latent Codes

Z’

Z

Latent Program
Decoder

Y’

 = train only

X

Quantize

Beam-L
Search

Beam-[B/L]
Search

Discrete bottleneck:
e.g. VQ-VAE

Two-level beam search

Discrete bottleneck: e.g.
VQ-VAE (Kaiser et al., 2018)

Training Loss 1: Fit Y’ to Y using Z (autoencoder loss)

Training Loss 2: Fit Z’ to Z (latent prediction loss)

Training Loss 3: Fit Y’ to Y using Z’ (end-to-end loss)

Latent Programmer

Y

Latent Predictor

Program Encoder

Latent Codes

Z’

Z

Latent Program
Decoder

Y’

 = train only

X

Quantize

Beam-L
Search

Beam-[B/L]
Search

Discrete bottleneck:
e.g. VQ-VAE

Two-level beam search

Discrete bottleneck: e.g.
VQ-VAE (Kaiser et al., 2018)

Training Loss 1: Fit Y’ to Y using Z (autoencoder loss)

Training Loss 2: Fit Z’ to Z (latent prediction loss)

Training Loss 3: Fit Y’ to Y using Z’ (end-to-end loss)

Evaluation: Generate Y’ using Z’

String Transformation: Setup
String transformation DSL:

String Transformation: Setup
Dataset:

● Randomly sampled 2M programs from the DSL of 1-10 expressions
● Each program has 4 randomly generated IO examples: used heuristics to

ensure each input mapped to non-empty output

Example problem:

Latent Programmer outperforms strong state-of-the-art-baselines

String Transformation: Results

Results from ablation study:

● LSTM vs transformer
● Continuous autoencoder vs. discrete

Comparison to other prior work:

Another form of
two-level search

Devlin et al., 2017

String Transformation: Results
Example with long repetitive structure where baseline fails but Latent Programmer
recovers the correct program

String Transformation: Analysis
Exploration-exploitation trade-off:
Higher latent beam size leads to
more diverse programs

Exploration-exploitation trade-off:
Higher latent beam size leads to
more diverse programs

Performs much better on longer
(more complex) programs.String Transformation: Analysis

Exploration-exploitation trade-off:
Higher latent beam size leads to
more diverse programs

Performs much better on longer
(more complex) programs.

Tokens often have
high-level semantic
meaning

String Transformation: Analysis

Python Code: Results
Latent Programmer also performs well in generating Python code from docstrings:

Wei et al., 2019

Python Code: Results
Latent Programmer also performs well in generating Python code from docstrings:

Add citation

Top program tokens
(TF-IDF score) for
select latent tokens.

Conclusion
Propose general two-level search where a high-level plan is generated, then
program conditioned on the plan

Latent Programmer:

● Plans are latent codes, or sequences of discrete latent variables
● Latent space is learned in a supervised algorithm using a discrete

autoencoder
● Two-level beam search on latent codes, then on program

Thank You!

