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Program Synthesis
Goal: Automatically generate programs given some specification that humans can 
easily provide, i.e. input-output (IO) examples or natural language descriptions



Program Synthesis
Goal: Automatically generate programs given some specification that humans can 
easily provide, i.e. input-output (IO) examples or natural language descriptions

Example 1: IO → String Transformation

1. “Mason Smith” ￫ “Smith M”
2. “Henry Myers” ￫  “Myers H”
3. “Barry Underwood” ￫  “Underwood B”
4. “sandy Jones” ￫  “Jones S”

GetToken_PROP_CASE_2 | “ ” | ToCase_UPPER(GetToken_CHAR_1)



Program Synthesis
Goal: Automatically generate programs given some specification that humans can 
easily provide, i.e. input-output (IO) examples or natural language descriptions

Example 2: Natural Language → Python Function

“return a list of words in the string s”
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Neural Program Synthesis

Problem: Seq-to-seq networks do very well on simple tasks, but fail to infer more 
complicated programs.
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Two-Level Search: Motivation
Example problem: Find string transformation that maps inputs to outputs

1. “Jacob,Ethan,James 11” ￫ “11:J.E.J.”
2. “Elijah,Daniel,Aiden 3162” ￫ “3162:E.D.A”
3. “Rick,Oliver,Mia 26” ￫ “26:R.O.M.”
4. “Mark,Ben,Sam 510” ￫ “510:M.B.S.”

How might a person solve this problem?



Example problem: Find string transformation that maps inputs to outputs

1. “Jacob,Ethan,James 11” ￫ “11:J.E.J.”
2. “Elijah,Daniel,Aiden 3162” ￫ “3162:E.D.A”
3. “Rick,Oliver,Mia 26” ￫ “26:R.O.M.”
4. “Mark,Ben,Sam 510” ￫ “510:M.B.S.”

Intuition: People would first construct a high-level plan for the program, then fills in 
details of the program based on the plan.

Two-Level Search: Motivation



Example problem: Find string transformation that maps inputs to outputs

1. “Jacob,Ethan,James 11” ￫ “11:J.E.J.”
2. “Elijah,Daniel,Aiden 3162” ￫ “3162:E.D.A”
3. “Rick,Oliver,Mia 26” ￫ “26:R.O.M.”
4. “Mark,Ben,Sam 510” ￫ “510:M.B.S.”

Number | 1st Initial | 2nd Initial | 3rd initial  (High-level plan)

GetToken_NUMBER_1 | “:” | GetToken_ALL_CAPS_1 | “.” | 
GetToken_ALL_CAPS_2 | “.” | GetToken_ALL_CAPS_3  (Low-level program)

Two-Level Search: Motivation



Two-Level Search: Plans
In two-level search, we consider generating high-level plan, then conditioned on 
the plan, perform low-level search over programs.
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beam search) on the plan space.



Two-Level Search: Plans
In two-level search, we consider generating high-level plan, then conditioned on 
the plan, perform low-level search over programs.

Question: How do we represent plans? Answer:  A sequence of discrete tokens.

● Why discrete? Because we can apply standard combinatorial search (i.e. 
beam search) on the plan space.

Example 1:

Last Initial | First Name                   GetToken | GetToken  (Program Sketch)

Murali et al., 2018



In two-level search, we consider generating high-level plan, then conditioned on 
the plan, perform low-level search over programs.

Question: How do we represent plans? Answer:  A sequence of discrete tokens.

● Why discrete? Because we can apply standard combinatorial search (i.e. 
beam search) on the plan space.

Example 2:

Last Initial | First Name             
GetToken_<HOLE>_<HOLE> | GetToken_WORD_<HOLE> (Program Sketch)

Nye et al., 2019

Two-Level Search: Plans



In two-level search, we consider generating high-level plan, then conditioned on 
the plan, perform low-level search over programs.

Question: How do we represent plans? Answer:  A sequence of discrete tokens.

● Why discrete? Because we can apply standard combinatorial search (i.e. 
beam search) on the plan space.

Example 3 (this work):

Last Initial | First Name                   TOK_2 | TOK_8  (Latent Code)

Two-Level Search: Plans



Latent Codes
We consider plans that are latent codes, where each token is a discrete latent 
variable in some learned latent space.
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Latent Codes
We consider plans that are latent codes, where each token is a discrete latent 
variable in some learned latent space.

● Latent codes provide generality and flexibility. The model can assign arbitrary 
meanings to tokens in the latent space. 

● How is it learned? Using a supervised technique where a discrete 
autoencoder generates intermediate latent code targets for the end-to-end 
prediction task. We consider using a VQ-VAE as the autoencoder (similarly 
done in Kaiser et al., 2018).
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Training Loss 1: Fit Y’ to Y using Z (autoencoder loss)
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e.g. VQ-VAE

Two-level beam search

Discrete bottleneck: e.g. 
VQ-VAE (Kaiser et al., 2018)

Training Loss 1: Fit Y’ to Y using Z (autoencoder loss)

Training Loss 2: Fit Z’ to Z (latent prediction loss)

Training Loss 3: Fit Y’ to Y using Z’ (end-to-end loss)

Evaluation: Generate Y’ using Z’



String Transformation: Setup
String transformation DSL:



String Transformation: Setup
Dataset:

● Randomly sampled 2M programs from the DSL of 1-10 expressions
● Each program has 4 randomly generated IO examples: used heuristics to 

ensure each input mapped to non-empty output

Example problem:



Latent Programmer outperforms strong state-of-the-art-baselines  

String Transformation: Results

Results from ablation study:

● LSTM vs transformer
● Continuous autoencoder vs. discrete

Comparison to other prior work:

Another form of 
two-level search

Devlin et al., 2017



String Transformation: Results
Example with long repetitive structure where baseline fails but Latent Programmer 
recovers the correct program



String Transformation: Analysis
Exploration-exploitation trade-off: 
Higher latent beam size leads to 
more diverse programs
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Higher latent beam size leads to 
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Performs much better on longer 
(more complex) programs.String Transformation: Analysis



Exploration-exploitation trade-off: 
Higher latent beam size leads to 
more diverse programs

Performs much better on longer 
(more complex) programs.

Tokens often have 
high-level semantic 
meaning

String Transformation: Analysis



Python Code: Results
Latent Programmer also performs well in generating Python code from docstrings:

Wei et al., 2019



Python Code: Results
Latent Programmer also performs well in generating Python code from docstrings:

Add citation

Top program tokens 
(TF-IDF score) for 
select latent tokens.



Conclusion
Propose general two-level search where a high-level plan is generated, then 
program conditioned on the plan

Latent Programmer: 

● Plans are latent codes, or sequences of discrete latent variables
● Latent space is learned in a supervised algorithm using a discrete 

autoencoder
● Two-level beam search on latent codes, then on program



Thank You!


