
CombOptNet: 
Fit the Right NP-Hard 
Problem by Learning 
Integer Programming 
Constraints

A. Paulus
M. Rolínek
V. Musil
B. Amos
G. Martius



Combinatorial 
optimization

Deep Learning

Motivation



● Include combinatorial block in architecture

NN layers / convolutions

learned 
representation

w y(w)

solver 
output

more NN layers 
 (optional)

Goal



Approaches

● GNNs: Mimic combinatorial solver for graph problems 
with message passing [1]

● Drawback: Suboptimal from combinatorial perspective

NN layers / convolutions

learned 
representation

w y(w)

solver 
output

more NN layers 
 (optional)



Approaches

● Softened solver: Design differentiable softened versions 
of solvers [2, 3]

NN layers / convolutions

learned 
representation

w y(w)

solver 
output

more NN layers 
 (optional)



Approaches

● Blackbox Differentiation: Blackbox backprop [4, 5, 6], 
differentiable perturbed optimizers [7]

● Drawback: Commit to specific combinatorial problem



Our Approach

● CombOptNet: ILP solver as differentiable layer



Integer Linear Programs



Integer Linear Programs

● Express NP-hard problems as ILPs

● Learning constraints = learning combinatorial nature



Architecture

● Generality: Aspires universal combinatorial expressivity

● Competitive combinatorics: SOTA ILP solver (Gurobi [8])



How? — The Difficulty

● Small perturbation typically does not change solution

● True gradient exists but is uninformative

● Cost: 

● Well-studied [4, 7, 9, 10, 11]

● Constraints:

● Mostly unexplored
● Difficult  (no active constraints)



● Decomposition of incoming gradient into integer basis

● Attainable update targets

● 2D ● 3D

How? — Components



● Gradient of geometry-aware mismatch function

● Generalizes concept of active constraints

● Precise definitions & algorithm on poster

How? — Components



ILP

Experiments — Knapsack

● Dataset:

● Architecture:



Experiments — Knapsack

● Results:



Experiments — Keypoint Matching

● Dataset:

● Architecture: Blackbox Graph Matching [6]



Experiments — Keypoint Matching

● Dataset:

● Architecture:



Experiments — Keypoint Matching

● Results:

● Examples:



References

github.com/martius-lab/CombOptNet

● [1] Q. Cappart, D. Chételat, E. Khalil, A. Lodi, C. Morris, P. Veličković
Combinatorial optimization and reasoning with graph neural networks

● [2] M. Fey, J. Lenssen, C. Morris, J. Masci, N. Kriege
Deep Graph Matching Consensus, ICLR 2020 

● [3] M. Engilberge, L. Chevallier, P. Pérez, M. Cord
SoDeep: a Sorting Deep net to learn ranking loss surrogates, CVPR 2019

● [4] M. Vlastelica, A. Paulus, V. Musil, G. Martius, M. Rolínek
Differentiation of Blackbox Combinatorial Solvers, ICLR 2020

● [5] M. Rolínek, V. Musil, A. Paulus, M. Vlastelica, C. Michaelis, G. Martius
Optimizing Rank-Based Metrics with Blackbox Differentiation, CVPR 2020

● [6] M. Rolínek, P. Swoboda, D. Zietlow, V. Musil, A. Paulus, G. Martius
Deep Graph Matching via Blackbox Differentiation, ECCV 2020

● [7] Q. Berthet, M. Blondel, O. Teboul, M. Cuturi, J. Vert, F. Bach
Learning with Differentiable Perturbed Optimizers, NeurIPS 2020

● [8] Gurobi Optimization, 2019, http://www.gurobi.com
● [9] A. Ferber, B. Wilder, B. Dilkina, M. Tambe

MIPaaL: Mixed Integer Program as a Layer, AAAI 2020
● [10] A. Elmachtoub, P. Grigas. Smart “Predict, then Optimize”
● [11] J. Mandi, E. Demirovic, P. Stuckey, T. Guns

Smart Predict-and-Optimize for Hard Combinatorial Optimization Problems, AAAI 2020

https://github.com/martius-lab/CombOptNet
http://www.gurobi.com/

	Slide 1
	Slide 2
	Slide 3
	Slide 4
	Slide 5
	Slide 6
	Slide 7
	Slide 8
	Slide 9
	Slide 10
	Slide 11
	Slide 12
	Slide 13
	Slide 14
	Slide 15
	Slide 16
	Slide 17
	Slide 18
	Slide 19

