Efficient Deviation Types and Learning in

Extensive-Form Games

Dustin Morrill, Ryan D'Orazio, Marc Lanctot,
James R. Wright, Michael Bowling, Amy R. Greenwald
July 16, 2021 - Berkeley MARL Group

Introduction

- We seek more effective algorithms for playing multi-player, general-sum extensive-form games (EFGs).

Hindsight Rationality

Learner $: \pi_{i}^{1} \quad \pi_{i}^{2} \quad \cdots \pi_{i}^{T} \quad \rightarrow \frac{1}{T} \sum_{t=1}^{T} u_{i}\left(\pi_{i}^{t}, \pi_{-i}^{t}\right)$
Deviation: $\phi\left(\pi_{i}^{1}\right) \phi\left(\pi_{i}^{2}\right) \cdots \phi\left(\pi_{i}^{T}\right) \quad \rightarrow \frac{1}{T} \sum_{t=1}^{T} u_{i}\left(\phi\left(\pi_{i}^{t}\right), \pi_{-i}^{t}\right)$
Objective: $\underbrace{\frac{1}{T} \sum_{t=1}^{T} u_{i}\left(\pi_{i}^{t}, \pi_{-i}^{t}\right)}_{\text {The learner's average reward. }} \geq \max _{\phi \in \Phi} \underbrace{\frac{1}{T} \sum_{t=1}^{T} u_{i}\left(\phi\left(\pi_{i}^{t}\right), \pi_{-i}^{t}\right)}_{\text {Deviation } \phi \text { 's average reward. }}-\underbrace{o(1)}_{\text {Leeway. }}$.

Extensive-Form Game Trees

Extensive-Form Game Trees

Information Set Trees

Strategies

Player i 's information set tree:

Strategies

The "always left" strategy:

Strategies

The "always left" strategy:

5 information sets with 2 actions $\Longrightarrow 2^{5}=32$ strategies.

Reduced Strategies

The reduced "always left" strategy:

Deviations

Deviations

At least 32 ways to transform any given strategy and 32^{32} possible deviation functions!

von Stengel and Forges's Deviations ${ }^{[1]}$

input action, $\pi_{i}(\cdot) \quad$ deviation action, $\left[\phi \pi_{i}\right](\cdot)$
$\phi\left(\pi_{i}\right)=9$
?

von Stengel and Forges's Deviations ${ }^{[1]}$

$$
\phi\left(\pi_{i}\right)=1
$$

input action, $\pi_{i}(\cdot) \quad$ deviation action, $\left[\phi \pi_{i}\right](\cdot)$
3

1

von Stengel and Forges's Deviations ${ }^{[1]}$

memory input action, $\pi_{i}(\cdot)$ deviation action, $\left[\phi \pi_{i}\right](\cdot)$

\varnothing
3
1

3
1
?

von Stengel and Forges's Deviations ${ }^{[1]}$

memory input action, $\pi_{i}(\cdot)$ deviation action, $\left[\phi \pi_{i}\right](\cdot)$

\varnothing
3
1

3
1
1

von Stengel and Forges's Deviations ${ }^{[1]}$

$\phi\left(\pi_{i}\right)=$

von Stengel and Forges's Deviations ${ }^{[1]}$

$\phi\left(\pi_{i}\right)=$

von Stengel and Forges's Deviations ${ }^{[1]}$

memory input action, $\pi_{i}(\cdot)$ deviation action, $\left[\phi \pi_{i}\right](\cdot)$

\varnothing

3

31
2

1

1

1

Deviation player behavior can only depend on their observations \Longrightarrow many deviation functions are ruled out.

von Stengel and Forges's Deviations ${ }^{[1]}$

memory input action, $\pi_{i}(\cdot)$ deviation action, $\left[\phi \pi_{i}\right](\cdot)$

\varnothing

3

31
2

1

1

1

But, the memory string grows linearly with depth
\Longrightarrow the \# of memory states grows exponentially
\Longrightarrow the \# of deviations is exponential in depth.

von Stengel and Forges's Deviations ${ }^{[2]}$ With a Reduced Strategy

memory input action, $\bar{\pi}_{i}(\cdot) \quad$ deviation action, $\left[\phi \bar{\pi}_{i}\right](\cdot)$
$\phi\left(\bar{\pi}_{i}\right)=9$
3
?

von Stengel and Forges's Deviations ${ }^{[2]}$ With a Reduced Strategy

memory input action, $\bar{\pi}_{i}(\cdot)$ deviation action, $\left[\phi \bar{\pi}_{i}\right](\cdot)$
$\phi\left(\bar{\pi}_{i}\right)=\Omega$
\varnothing
3
1

von Stengel and Forges's Deviations ${ }^{[2]}$ With a Reduced Strategy

memory input action, $\bar{\pi}_{i}(\cdot)$ deviation action, $\left[\phi \bar{\pi}_{i}\right](\cdot)$

\varnothing

3
3 1 ?

von Stengel and Forges's Deviations ${ }^{[2]}$ With a Reduced Strategy

memory input action, $\bar{\pi}_{i}(\cdot)$ deviation action, $\left[\phi \bar{\pi}_{i}\right](\cdot)$

\varnothing

3
3
1

1

von Stengel and Forges's Deviations ${ }^{[2]}$ With a Reduced Strategy

memory input action, $\bar{\pi}_{i}(\cdot)$ deviation action, $\left[\phi \bar{\pi}_{i}\right](\cdot)$

\varnothing

3 *

3
*

1
1
?

von Stengel and Forges's Deviations ${ }^{[2]}$ With a Reduced Strategy

\varnothing

memory input action, $\bar{\pi}_{i}(\cdot)$ deviation action, $\left[\phi \bar{\pi}_{i}\right](\cdot)$
3
1

1

1

von Stengel and Forges's Deviations ${ }^{[2]}$ With a Reduced Strategy

memory input action, $\bar{\pi}_{i}(\cdot)$ deviation action, $\left[\phi \bar{\pi}_{i}\right](\cdot)$

\varnothing
3
1

3
*
1

3 *
*
1

Now the \# of possible memory states (and thus deviations) grows linearly.

Behavioral Deviations

$$
\phi=\left\{\phi_{I, g}: \mathcal{A}(I) \rightarrow \mathcal{A}(I)\right\}_{\substack{\text { information set } \\ \text { memory state } g}}
$$

Behavioral Deviations

memory state: transformation

$\phi=$

Behavioral Deviations

memory state: transformation
$\phi=$

$$
\varnothing: \phi^{3 \rightarrow 1}
$$

$$
1: \phi^{1 \rightarrow 2}, \quad 3: \phi^{\rightarrow 1}
$$

Arriving in $I_{1} \Longrightarrow\left[\phi^{3 \rightarrow 1} \pi_{i}\right]\left(I_{0}\right)=1$
$\Longrightarrow \pi_{i}\left(I_{0}\right)=1$ or $\pi_{i}\left(I_{0}\right)=3$.

Behavioral Deviations

memory state: transformation

$\varnothing: \phi^{3 \rightarrow 1}$
$1: \phi^{1 \rightarrow 2}, \quad 3: \phi^{\rightarrow 1}$
$11: \phi^{2 \rightarrow 1}, \quad 12: \phi^{\rightarrow 1}, \quad 3 *: \phi^{2 \rightarrow 1}$

Arriving in I_{3} neither requires nor reveals $\pi_{i}\left(I_{1}\right)$ since $\phi^{\rightarrow 1}$ is external/constant.

Behavioral Deviations

memory state: transformation

$\varnothing: \phi^{3 \rightarrow 1}$
$1: \phi^{1 \rightarrow 2}, \quad 3: \phi^{\rightarrow 1}$
$11: \phi^{2 \rightarrow 1}, \quad 12: \phi^{\rightarrow 1}, \quad 3 *: \phi^{2 \rightarrow 1}$

The action at I_{1} in memory state " 3 " can be hidden from the deviation player, but the action at I_{3} can be revealed.

Behavioral Deviations

The EFG Deviation Landscape

Extensive-Form Regret Minimization (EFR)

EFR works by learning $\pi_{i}^{t}(I) \in \Delta^{|\mathcal{A}(I)|}$.

Extensive-Form Regret Minimization (EFR)

How much incentive does the deviation player have to employ transformations at I ?

Extensive-Form Regret Minimization (EFR)

How much incentive does the deviation player have to employ transformations at I ?

What is the value of each action a under i 's current strategy, π_{i}^{t} ?

Extensive-Form Regret Minimization (EFR)

How often does each $\phi \in \Phi_{\mathcal{I}_{i}}^{\text {IN }}$ reach I and with what memory state?
How much incentive does the deviation player have to employ transformations at I ?

What is the value of each action a under i 's current strategy, π_{i}^{t} ?

Extensive-Form Regret Minimization (EFR)

How often does each $\phi \in \Phi_{\mathcal{I}_{i}}^{\text {IN }}$ reach I and with what memory state?
How much incentive does the deviation player have to employ transformations at I ?
$\uparrow \forall a, \underbrace{v_{I}\left(a ; \pi^{t}\right)}_{\text {vounterf }}$
Counterfactual value,
i.e., expected payoff for a assuming i plays to I.

Extensive-Form Regret Minimization (EFR)

Memory probability,
i.e., the chance that $\phi\left(\pi_{i}^{t}\right)$ reaches I in memory state g.

$\downarrow \forall \in \Phi_{\mathcal{I}_{i}}^{\mathrm{IN}}, g, \overbrace{w_{\phi}\left(I, g ; \pi_{i}^{t}\right)} \in[0,1]$
How much incentive does the deviation player have to employ transformations at I ?
$\uparrow \forall a, \underbrace{v_{I}\left(a ; \pi^{t}\right)}_{\text {Counterfactual value, }}$
i.e., expected payoff for a assuming i plays to I.

Extensive-Form Regret Minimization (EFR)

Memory probability,
i.e., the chance that $\phi\left(\pi_{i}^{t}\right)$ reaches I in memory state g.

$$
\begin{aligned}
& \downarrow \forall \phi \in \Phi_{\mathcal{I}_{i}}^{\mathrm{IN}}, g, \overbrace{w_{\phi}\left(I, g ; \pi_{i}^{t}\right)} \in[0,1] \\
& w_{\phi}\left(I, g ; \pi_{i}^{t}\right) \underbrace{\left(v_{I}\left(\left[\phi_{I, g} \pi_{i}^{t}\right](I) ; \pi^{t}\right)-v_{I}\left(\pi_{i}^{t}(I) ; \pi^{t}\right)\right)}_{\text {Counterfactual regret, } \rho_{I}^{\text {CF }}\left(\phi_{I, g} ; \pi^{t}\right) .}
\end{aligned}
$$

$$
\uparrow \forall a, \underbrace{v_{I}\left(a ; \pi^{t}\right)}_{\text {vuntarf }}
$$

Counterfactual value,
i.e., expected payoff for a assuming i plays to I.

Extensive-Form Regret Minimization (EFR)

Memory probability,
i.e., the chance that $\phi\left(\pi_{i}^{t}\right)$ reaches I in memory state g.

Extensive-Form Regret Minimization (EFR)

Memory probability,
i.e., the chance that $\phi\left(\pi_{i}^{t}\right)$ reaches I in memory state g.
$\forall \phi \in \Phi_{\mathcal{I}_{i}}^{\mathrm{IN}}, g, \overbrace{w_{\phi}\left(I, g ; \pi_{i}^{t}\right)} \in[0,1]$
$\forall a, \underbrace{}_{\substack{\text { Counterfactual value, } \\ \text { i.e., expected payoff for } a \text { assuming } i \text { plays to } I \text {. } \\ v_{I}\left(a ; \pi^{t}\right)}}$ This is a time selection problem! [4]

Extensive-Form Regret Minimization (EFR)

Memory probability,
i.e., the chance that $\phi\left(\pi_{i}^{t}\right)$ reaches I in memory state g.

i.e., expected payoff for a assuming i plays to I.

Time Selection Regret Matching

- Sets $\pi_{i}^{t}(I) \leftarrow$ to be a fixed point of a linear operator, L^{t} :

Time Selection Regret Matching

- Sets $\pi_{i}^{t}(I) \leftarrow$ to be a fixed point of a linear operator, L^{t} :

$$
x_{\phi_{I, g}}^{t} \leftarrow \sum_{k}^{t-1} w_{\phi}\left(I, g ; \pi_{i}^{k}\right) \rho_{I}^{\mathrm{CF}}\left(\phi_{I, g} ; \pi^{k}\right)
$$

\triangleright Cumulative immediate regret.

Time Selection Regret Matching

- Sets $\pi_{i}^{t}(I) \leftarrow$ to be a fixed point of a linear operator, L^{t} :

$$
x_{\phi_{I, g}}^{t} \leftarrow \sum_{k}^{t-1} w_{\phi}\left(I, g ; \pi_{i}^{k}\right) \rho_{I}^{\mathrm{CF}}\left(\phi_{I, g} ; \pi^{k}\right)
$$

$$
y_{\phi_{I}}^{t} \leftarrow \sum_{g} w_{\phi}\left(I, g ; \pi_{i}^{t}\right) f\left(x_{\phi_{I, g}}^{t}\right) \quad \triangleright \text { Link output/preference for } \phi_{I}
$$

Time Selection Regret Matching

- Sets $\pi_{i}^{t}(I) \leftarrow$ to be a fixed point of a linear operator, L^{t} :

$$
\begin{aligned}
& x_{\phi_{I, g}}^{t} \leftarrow \sum_{k}^{t-1} w_{\phi}\left(I, g ; \pi_{i}^{k}\right) \rho_{I}^{\mathrm{CF}}\left(\phi_{I, g} ; \pi^{k}\right) \\
& y_{\phi_{I}}^{t} \leftarrow \sum_{g} w_{\phi}\left(I, g ; \pi_{i}^{t}\right) f\left(x_{\phi_{I, g}}^{t}\right) \\
& L^{t}: \Delta^{|\mathcal{A}(I)|} \ni \sigma \mapsto \frac{1}{z^{t}} \sum_{\phi_{I}} y_{\phi_{I}}^{t} \phi_{I}(\sigma) .
\end{aligned}
$$

\triangleright Cumulative immediate regret.
\triangleright Link output/preference for ϕ_{I}.
\triangleright Convex combination.

Time Selection Regret Matching

- Sets $\pi_{i}^{t}(I) \leftarrow$ to be a fixed point of a linear operator, L^{t} :

$$
\begin{aligned}
& x_{\phi_{I, g}}^{t} \leftarrow \sum_{k}^{t-1} w_{\phi}\left(I, g ; \pi_{i}^{k}\right) \rho_{I}^{\mathrm{CF}}\left(\phi_{I, g} ; \pi^{k}\right) \\
& y_{\phi_{I}}^{t} \leftarrow \sum_{g} w_{\phi}\left(I, g ; \pi_{i}^{t}\right) f\left(x_{\phi_{I, g}}^{t}\right) \\
& L^{t}: \Delta^{|\mathcal{A}(I)|} \ni \sigma \mapsto \frac{1}{z^{t}} \sum_{\phi_{I}} y_{\phi_{I}}^{t} \phi_{I}(\sigma) .
\end{aligned}
$$

\triangleright Cumulative immediate regret.
\triangleright Link output/preference for ϕ_{I}.
\triangleright Convex combination.

- Permits:

Time Selection Regret Matching

- Sets $\pi_{i}^{t}(I) \leftarrow$ to be a fixed point of a linear operator, L^{t} :

$$
\begin{array}{rr}
x_{\phi_{I, g}}^{t} \leftarrow \sum_{k}^{t-1} w_{\phi}\left(I, g ; \pi_{i}^{k}\right) \rho_{I}^{\mathrm{CF}}\left(\phi_{I, g} ; \pi^{k}\right) & \triangleright \text { Cumulative immediate regret. } \\
y_{\phi_{I}}^{t} \leftarrow \sum_{g} w_{\phi}\left(I, g ; \pi_{i}^{t}\right) f\left(x_{\phi_{I, g}}^{t}\right) & \triangleright \text { Link output/preference for } \phi_{I} . \\
L^{t}: \Delta^{|\mathcal{A}(I)|} \ni \sigma \mapsto \frac{1}{z^{t}} \sum_{\phi_{I}} y_{\phi_{I}}^{t} \phi_{I}(\sigma) . & \triangleright \text { Convex combination. }
\end{array}
$$

- Permits:
- choice of link function f, e.g., $f(\cdot)=\max \{0, \cdot\}$ or $f(\cdot)=\mathrm{e}^{\eta}$.

Time Selection Regret Matching

- Sets $\pi_{i}^{t}(I) \leftarrow$ to be a fixed point of a linear operator, L^{t} :

$$
\begin{array}{lr}
x_{\phi_{I, g}}^{t} \leftarrow \sum_{k}^{t-1} w_{\phi}\left(I, g ; \pi_{i}^{k}\right) \rho_{I}^{\mathrm{CF}}\left(\phi_{I, g} ; \pi^{k}\right) & \triangleright \text { Cumulative immediate regret. } \\
y_{\phi_{I}}^{t} \leftarrow \sum_{g} w_{\phi}\left(I, g ; \pi_{i}^{t}\right) f\left(x_{\phi_{I, g}}^{t}\right) & \triangleright \text { Link output/preference for } \phi_{I} . \\
L^{t}: \Delta^{|\mathcal{A}(I)|} \ni \sigma \mapsto \frac{1}{z^{t}} \sum_{\phi_{I}} y_{\phi_{I}}^{t} \phi_{I}(\sigma) . & \triangleright \text { Convex combination. }
\end{array}
$$

- Permits:
- choice of link function f, e.g., $f(\cdot)=\max \{0, \cdot\}$ or $f(\cdot)=\mathrm{e}^{\eta}$.
- approximating $x_{\phi_{I, g}}^{t}$ instead of storing it in a table, and

Time Selection Regret Matching

- Sets $\pi_{i}^{t}(I) \leftarrow$ to be a fixed point of a linear operator, L^{t} :

$$
\begin{array}{lr}
x_{\phi_{I, g}}^{t} \leftarrow \sum_{k}^{t-1} w_{\phi}\left(I, g ; \pi_{i}^{k}\right) \rho_{I}^{\mathrm{CF}}\left(\phi_{I, g} ; \pi^{k}\right) & \triangleright \text { Cumulative immediate regret. } \\
y_{\phi_{I}}^{t} \leftarrow \sum_{g} w_{\phi}\left(I, g ; \pi_{i}^{t}\right) f\left(x_{\phi_{I, g}}^{t}\right) & \triangleright \text { Link output/preference for } \phi_{I} . \\
L^{t}: \Delta^{|\mathcal{A}(I)|} \ni \sigma \mapsto \frac{1}{z^{t}} \sum_{\phi_{I}} y_{\phi_{I}}^{t} \phi_{I}(\sigma) . & \triangleright \text { Convex combination. }
\end{array}
$$

- Permits:
- choice of link function f, e.g., $f(\cdot)=\max \{0, \cdot\}$ or $f(\cdot)=\mathrm{e}^{\eta}$.
- approximating $x_{\phi_{I, g}}^{t}$ instead of storing it in a table, and
- predicting the next instantaneous regret for each $\phi_{I, g}$.

EFR: Regret Decomposition

Minimize immediate Minimize immediate

regret at parent

\Longrightarrow Two-step regret is minimized.

Restricting EFR's Deviations to Improve Efficiency

Restricting EFR's Deviations to Improve Efficiency

We can restrict EFR's deviation set to $\Phi \subseteq \Phi_{\mathcal{I}_{i}}^{\mathbb{N}}$ to ensure efficiency and re-construct previous algorithms!

Reductions to Previous Algorithms

$-\operatorname{EFR}(\xi)=\operatorname{CFR}^{[3]}$
${ }^{[3]}$ Zinkevich et al., "Regret Minimization in Games with Incomplete Information".

Reductions to Previous Algorithms

${ }^{[3]}$ Zinkevich et al., "Regret Minimization in Games with Incomplete Information".
${ }^{[4]}$ Celli et al., "No-regret learning dynamics for extensive-form correlated equilibrium".

Reductions to Previous Algorithms

- $\operatorname{EFR}\left(\xi \xi_{\Delta}^{\boldsymbol{\xi}}\right)=\operatorname{CFR}^{[3]}$
- $\operatorname{EFR}\left(\xi_{\Delta}^{\Delta}\right) \approx \operatorname{ICFR}{ }^{[4]}$
- $\operatorname{EFR}\left(\xi^{\wedge}\right) \approx \operatorname{PGPI}{ }^{[5]}$
${ }^{[3]}$ Zinkevich et al., "Regret Minimization in Games with Incomplete Information".
${ }^{[4]}$ Celli et al., "No-regret learning dynamics for extensive-form correlated equilibrium".
${ }^{[5]}$ Srinivasan et al., "Actor-Critic Policy Optimization in Partially Observable Multiagent Environments";
Morrill et al., "Hindsight and Sequential Rationality of Correlated Play".

New Efficient Variants

- TIPS: EFR $\left(\sum_{\substack{k}}^{\xi}\right), \#$ deviations: $\mathcal{O}\left(d_{*} n_{\mathcal{A}}^{3}\right)$.

New Efficient Variants

New Efficient Variants

- TIPS: EFR $\left(\sum_{\Delta}^{\xi_{j}}\right), \#$ deviations: $\mathcal{O}\left(d_{*} n_{\mathcal{A}}^{3}\right)$.
- $\operatorname{CSPS}: \operatorname{EFR}\left(\sum_{\Delta}^{\xi}\right), \#$ deviations: $\mathcal{O}\left(d_{*} n_{\mathcal{A}}^{2}\right)$.
- CFPS: $\operatorname{EFR}\left(\frac{\xi}{\sqrt{\widehat{a}}}\right)$, \# deviations: $\mathcal{O}\left(d_{*} n_{\mathcal{A}}^{2}\right)$.

New Efficient Variants

- TIPS: $\operatorname{EFR}\binom{$ 号 }{$\underset{\triangle}{3}}$, \# deviations: $\mathcal{O}\left(d_{*} n_{\mathcal{A}}^{3}\right)$.
- CSPS: $\operatorname{EFR}\binom{\xi}{\xi}$, \# deviations: $\mathcal{O}\left(d_{*} n_{\mathcal{A}}^{2}\right)$.
- CFPS: $\operatorname{EFR}(\underset{\triangle}{\hat{\jmath}})$, \# deviations: $\mathcal{O}\left(d_{*} n_{\mathcal{A}}^{2}\right)$.
- BPS: $\operatorname{EFR}\left(\xi_{\Delta}^{\xi}\right)$, \# deviations: $\mathcal{O}\left(d_{*} n_{\mathcal{A}}\right)$.

Learning Curves

$$
-\mathrm{ACT}_{\mathrm{IN}}-\mathrm{CFR}-\mathrm{TIPS}-\mathrm{BHV}
$$

Learning Curves

$$
-\mathrm{ACT}_{\mathrm{IN}}-\mathrm{CFR}-\mathrm{TIPS}-\mathrm{BHV}
$$

$\operatorname{goofspiel}(5, \uparrow, N=2)$
$\operatorname{goofspiel}(4, \uparrow, N=3)$

Learning Curves

$-\mathrm{ACT}_{\mathrm{IN}}-\mathrm{CFR}-\mathrm{TIPS}-\mathrm{BHV}$
$\operatorname{goofspiel}(5, \uparrow, N=2)$
$\operatorname{goofspiel}(4, \uparrow, N=3)$

Sheriff($N=2$)

Learning Curves

$-\mathrm{ACT}_{\text {IN }}-\mathrm{CFR}-$ TIPS -BHV
oblivious, non-stationary
$\operatorname{goofspiel}(5, \uparrow, N=2)$
$\operatorname{goofspiel}(4, \uparrow, N=3)$

Sheriff($N=2$)

Learning Curves

$$
-\mathrm{ACT}_{\mathrm{IN}}-\mathrm{CFR}-\mathrm{TIPS}-\mathrm{BHV}
$$

oblivious, non-stationary
$\operatorname{goofspiel}(5, \uparrow, N=2)$
$\operatorname{goofspiel}(4, \uparrow, N=3)$

Sheriff($N=2$)

Learning Curves

$$
-\mathrm{ACT}_{\mathrm{IN}}-\mathrm{CFR}-\mathrm{TIPS}-\mathrm{BHV}
$$

Learning Curves

$$
-\mathrm{ACT}_{\mathrm{IN}}-\mathrm{CFR}-\mathrm{TIPS}-\mathrm{BHV}
$$

Conclusions

Conclusions

- Behavioral deviations are natural and expressive.

Conclusions

- Behavioral deviations are natural and expressive.
- EFR is hindsight rational for any given behavioral deviation subset with computation that scales closely with that set's complexity.

Conclusions

- Behavioral deviations are natural and expressive.
- EFR is hindsight rational for any given behavioral deviation subset with computation that scales closely with that set's complexity.
- The partial sequence deviations are efficient and powerful.

Conclusions

- Behavioral deviations are natural and expressive.
- EFR is hindsight rational for any given behavioral deviation subset with computation that scales closely with that set's complexity.
- The partial sequence deviations are efficient and powerful.
- EFR with a stronger deviation type tends to perform better.

Conclusions

Some remaining challenges:

Conclusions

Some remaining challenges:

- Stronger deviation types require more computation.

Conclusions

Some remaining challenges:

- Stronger deviation types require more computation.
- Stronger deviation types lead to worse bounds with respect to weaker types.

Conclusions

Some remaining challenges:

- Stronger deviation types require more computation.
- Stronger deviation types lead to worse bounds with respect to weaker types.

Possible solutions:

Conclusions

Some remaining challenges:

- Stronger deviation types require more computation.
- Stronger deviation types lead to worse bounds with respect to weaker types.

Possible solutions:

- Characterize the potential benefit of a stronger deviation type in a given game.

Conclusions

Some remaining challenges:

- Stronger deviation types require more computation.
- Stronger deviation types lead to worse bounds with respect to weaker types.

Possible solutions:

- Characterize the potential benefit of a stronger deviation type in a given game.
- Navigate tradeoffs by using ideas from the fixed-share forecaster ${ }^{[6]}$ and context tree weighting ${ }^{[7]}$.
${ }^{[6]}$ Herbster and Warmuth, "Tracking the best expert".
${ }^{[7]}$ Willems, Shtarkov, and Tjalkens, "Context tree weighting: a sequential universal source coding procedure for FSMX sources".

Conclusions

Some remaining challenges:

- Stronger deviation types require more computation.
- Stronger deviation types lead to worse bounds with respect to weaker types.

Possible solutions:

- Characterize the potential benefit of a stronger deviation type in a given game.
- Navigate tradeoffs by using ideas from the fixed-share forecaster ${ }^{[6]}$ and context tree weighting ${ }^{[7]}$.
- Weighting deviation regrets to improve performance with respect to weaker deviation types.
${ }^{[6]}$ Herbster and Warmuth, "Tracking the best expert".
${ }^{[7]}$ Willems, Shtarkov, and Tjalkens, "Context tree weighting: a sequential universal source coding procedure for FSMX sources".

Efficient Deviation Types and Learning in

Extensive-Form Games

Dustin Morrill, Ryan D'Orazio, Marc Lanctot,
James R. Wright, Michael Bowling, Amy R. Greenwald
July 16, 2021 - Berkeley MARL Group

