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Introduction

• We seek more effective algorithms for playing multi-player, general-sum
extensive-form games (EFGs).
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Hindsight Rationality
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Extensive-Form Game Trees
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Information Set Trees
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Player 1

• • •
u2(z1) u2(z2) u2(z3)

Player 2
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Strategies

• • •

ui(LLRL) ui(LLRR)

Player i’s information set tree:

ui(LLL)
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Strategies

• • •

ui(LLRL) ui(LLRR)

The “always left” strategy:

ui(LLL)
5 information sets with 2 actions
=⇒ 25 = 32 strategies.
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Reduced Strategies

• • •

ui(LLRL) ui(LLRR)

The reduced “always left” strategy:

ui(LLL)
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Deviations

ϕ • • • • • •
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Deviations

ϕ • • • • • •

At least 32 ways to transform any given strategy and 3232 possible deviation functions!
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von Stengel and Forges’s Deviations [1]

ϕ(πi) =

memory

input action, πi(·) deviation action, [ϕπi](·)

∅

3 ?

[1] von Stengel and Forges, “Extensive-form correlated equilibrium: Definition and computational complexity”.
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von Stengel and Forges’s Deviations [1]

ϕ(πi) =
memory input action, πi(·) deviation action, [ϕπi](·)

∅ 3 1

3 1 1

3 1 2 1

Deviation player behavior can only depend on their observations
=⇒ many deviation functions are ruled out.

[1] von Stengel and Forges, “Extensive-form correlated equilibrium: Definition and computational complexity”.
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von Stengel and Forges’s Deviations [1]

ϕ(πi) =
memory input action, πi(·) deviation action, [ϕπi](·)

∅ 3 1

3 1 1

3 1 2 1

But, the memory string grows linearly with depth
=⇒ the # of memory states grows exponentially
=⇒ the # of deviations is exponential in depth.

[1] von Stengel and Forges, “Extensive-form correlated equilibrium: Definition and computational complexity”.
7 / 20



von Stengel and Forges’s Deviations [2] With a Reduced Strategy

ϕ(π̄i) =
memory input action, π̄i(·) deviation action, [ϕπ̄i](·)

∅ 3 ?

[2] von Stengel and Forges, “Extensive-form correlated equilibrium: Definition and computational complexity”.
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von Stengel and Forges’s Deviations [2] With a Reduced Strategy

ϕ(π̄i) =
memory input action, π̄i(·) deviation action, [ϕπ̄i](·)

∅ 3 1

3 * 1

3 * * 1

Now the # of possible memory states (and thus deviations) grows linearly.

[2] von Stengel and Forges, “Extensive-form correlated equilibrium: Definition and computational complexity”.
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Behavioral Deviations: A Flexible
Formalization of von Stengel and
Forges’s Deviations



Behavioral Deviations

ϕ = {ϕI,g : A(I)→ A(I)}information set I,
memory state g
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ϕ = I0
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Behavioral Deviations

ϕ = I0

memory state: transformation
∅: ϕ3→1

I1

I1

1 3 1 : ϕ1→2, 3 : ϕ→1

Arriving in I1 =⇒ [ϕ3→1πi](I0) = 1
=⇒ πi(I0) = 1 or πi(I0) = 3.
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Behavioral Deviations

ϕ = I0

memory state: transformation
∅: ϕ3→1

I1

I1

I3

1 3 1 : ϕ1→2, 3 : ϕ→1

I2

I2

1 2 1 1 : ϕ2→1, 1 2 : ϕ→1, 3 ∗ : ϕ2→1

Arriving in I3 neither requires nor reveals πi(I1) since ϕ→1 is external/constant.
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Behavioral Deviations

ϕ = I0

memory state: transformation
∅: ϕ3→1

I1

I1

I3

1 3 1 : ϕ1→2, 3 : ϕ→1

I2

I2

1 2 1 1 : ϕ2→1, 1 2 : ϕ→1, 3 ∗ : ϕ2→1

The action at I1 in memory state “3” can be hidden from the deviation player,
but the action at I3 can be revealed.
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Behavioral Deviations

ϕ = I0

I1

I1

I3

1 3

I2

I2

1 2

∈ Φin
Ii
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The EFG Deviation Landscape

identity change info

tree

sequence

action

causal action CF

causal action CF
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twice informed PS

causal PS CFPS
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11 / 20



Extensive-Form Regret Minimization
(EFR)



Extensive-Form Regret Minimization (EFR)

I EFR works by learning πt
i(I) ∈ ∆|A(I)|.
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I

∀a, vI(a; πt)

Counterfactual value,
i.e., expected payoff for a assuming i plays to I.

∀ϕ ∈ Φin
Ii

, g, wϕ(I, g; πt
i)∈ [0, 1]

Memory probability,
i.e., the chance that ϕ(πt

i) reaches I in memory state g.

wϕ(I, g; πt
i)
(
vI

(
[ϕI,gπt

i ](I); πt)− vI

(
πt

i(I); πt))︸ ︷︷ ︸
Counterfactual regret, ρcf

I (ϕI,g ;πt).

12 / 20



Extensive-Form Regret Minimization (EFR)

I

∀a, vI(a; πt)

Counterfactual value,
i.e., expected payoff for a assuming i plays to I.

∀ϕ ∈ Φin
Ii

, g, wϕ(I, g; πt
i)∈ [0, 1]

Memory probability,
i.e., the chance that ϕ(πt

i) reaches I in memory state g.

wϕ(I, g; πt
i)ρcf

I (ϕI,g; πt)

12 / 20



Extensive-Form Regret Minimization (EFR)

I

∀a, vI(a; πt)

Counterfactual value,
i.e., expected payoff for a assuming i plays to I.

∀ϕ ∈ Φin
Ii

, g, wϕ(I, g; πt
i)∈ [0, 1]

Memory probability,
i.e., the chance that ϕ(πt

i) reaches I in memory state g.

wϕ(I, g; πt
i)ρcf

I (ϕI,g; πt) This is a time selection problem! [4]

[4] Blum and Mansour, “From external to internal regret”.
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Extensive-Form Regret Minimization (EFR)

I

∀a, vI(a; πt)

Counterfactual value,
i.e., expected payoff for a assuming i plays to I.

∀ϕ ∈ Φin
Ii

, g, wϕ(I, g; πt
i)∈ [0, 1]

Memory probability,
i.e., the chance that ϕ(πt

i) reaches I in memory state g.

wϕ(I, g; πt
i)ρcf

I (ϕI,g; πt)
Our solution:
time selection regret matching.
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Time Selection Regret Matching

• Sets πt
i(I)← to be a fixed point of a linear operator, Lt:

xt
ϕI,g
←

t−1∑
k

wϕ(I, g; πk
i )ρcf

I (ϕI,g; πk) ▷ Cumulative immediate regret.

yt
ϕI
←
∑

g

wϕ(I, g; πt
i)f
(
xt

ϕI,g

)
▷ Link output/preference for ϕI .

Lt : ∆|A(I)| 3 σ 7→ 1
zt

∑
ϕI

yt
ϕI

ϕI(σ). ▷ Convex combination.

• Permits:
• choice of link function f , e.g., f(·) = max{0, ·} or f(·) = eη·.
• approximating xt

ϕI,g
instead of storing it in a table, and

• predicting the next instantaneous regret for each ϕI,g.
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EFR: Regret Decomposition

I I

Minimize immediate
regret at children.

I

Minimize immediate
regret at parent.

I I I I

Two-step regret is minimized.
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Restricting EFR’s Deviations to Improve Efficiency

I

∀a, vI(a; πt)

∀ϕ ∈ Φin
Ii

, g , wϕ(I, g; πt
i) ∈ [0, 1]

wϕ(I, g; πt
i)ρcf

I (ϕI,g; πt)
The # of regrets depends on the
# of deviations and their realizable

(∃πi, wϕ(I, g; πi) > 0) memory states.
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I

∀a, vI(a; πt)

∀ϕ ∈ Φ, g , wϕ(I, g; πt
i) ∈ [0, 1]

wϕ(I, g; πt
i)ρcf

I (ϕI,g; πt)
The # of regrets depends on the
# of deviations and their realizable

(∃πi, wϕ(I, g; πi) > 0) memory states.

We can restrict EFR’s deviation set to Φ ⊆ Φin
Ii

to
ensure efficiency and re-construct previous algorithms!
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Reductions to Previous Algorithms

• EFR
( )

= CFR [3]

• EFR
( )

≈ ICFR [4]

• EFR
( )

≈ PGPI [5]

[3] Zinkevich et al., “Regret Minimization in Games with Incomplete Information”.
[4] Celli et al., “No-regret learning dynamics for extensive-form correlated equilibrium”.
[5] Srinivasan et al., “Actor-Critic Policy Optimization in Partially Observable Multiagent Environments”;
Morrill et al., “Hindsight and Sequential Rationality of Correlated Play”.

16 / 20



Reductions to Previous Algorithms

• EFR
( )

= CFR [3]

• EFR
( )

≈ ICFR [4]

• EFR
( )

≈ PGPI [5]

[3] Zinkevich et al., “Regret Minimization in Games with Incomplete Information”.
[4] Celli et al., “No-regret learning dynamics for extensive-form correlated equilibrium”.
[5] Srinivasan et al., “Actor-Critic Policy Optimization in Partially Observable Multiagent Environments”;
Morrill et al., “Hindsight and Sequential Rationality of Correlated Play”.

16 / 20



Reductions to Previous Algorithms

• EFR
( )

= CFR [3]

• EFR
( )

≈ ICFR [4]

• EFR
( )

≈ PGPI [5]

[3] Zinkevich et al., “Regret Minimization in Games with Incomplete Information”.
[4] Celli et al., “No-regret learning dynamics for extensive-form correlated equilibrium”.
[5] Srinivasan et al., “Actor-Critic Policy Optimization in Partially Observable Multiagent Environments”;
Morrill et al., “Hindsight and Sequential Rationality of Correlated Play”.

16 / 20



New Efficient Variants

• TIPS: EFR
( )

, # deviations: O(d∗n3
A).

• CSPS: EFR
( )

, # deviations: O(d∗n2
A).

• CFPS: EFR
( )

, # deviations: O(d∗n2
A).

• BPS: EFR
( )

, # deviations: O(d∗nA).
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A Sample of Representative
Experimental Results
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