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Introduction

= We seek more effective algorithms for playing multi-player, general-sum
extensive-form games (EFGs).
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Hindsight Rationality

L

> earner

1 2

Learner : m; ;

T
Deviation : ¢(m}) ¢(m?) -+

1z
Objective: T;ui(ﬂf,wii) >max — > wui(¢(m)), ;) — o(l) .

Leeway.

The learner’s average reward. Deviation ¢'s average reward.

2/20



Extensive-Form Game Trees
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Extensive-Form Game Trees
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Information Set Trees

Player 1

Player 2
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Strategies

Player i's information set tree:

S

u;(LLL)

w;(LLRL) u;(LLRR)
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Strategies

The “always left” strategy:

()
[ ] [ ] [ ]
wi(LLL) /Q
w(LLRL)  w(LLRR)
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Strategies

The “always left" strategy:

5 mformatlon sets with 2 actions
= 32 strategies.

uZ(LLRL) u;(LLRR)
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Reduced Strategies

The reduced “always left” strategy:

()
[ ]
wi(LLL) /Q\
wi(LLRL)  wi(LLRR)
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Deviations



Deviations

232 possible deviation functions!

At least 32 ways to transform any given strategy and 3
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von Stengel and Forges’s Deviations !!

input action, 7;(-)  deviation action, [¢7;](+)

P(mi) = A ’ i

[Myon Stengel and Forges, “Extensive-form correlated equilibrium: Definition and computational complexity”.
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von Stengel and Forges’s Deviations !!
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von Stengel and Forges’s Deviations [!]

memory input action, 7;(-)  deviation action, [¢7;](+)

P(m;) = : ’ :

Deviation player behavior can only depend on their observations

= many deviation functions are ruled out.

Myon Stengel and Forges, “Extensive-form correlated equilibrium: Definition and computational complexity".
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von Stengel and Forges’s Deviations [!]

memory input action, 7;(-)  deviation action, [¢7;](+)

o(mi) = ’ 3 1

But, the memory string grows linearly with depth
—> the # of memory states grows exponentially

—> the # of deviations is exponential in depth.

Myon Stengel and Forges, “Extensive-form correlated equilibrium: Definition and computational complexity".
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von Stengel and Forges’s Deviations ! With a Reduced Strategy

memory input action, 7;(-)  deviation action, [¢7;](+)

om)= |

lyon Stengel and Forges, “Extensive-form correlated equilibrium: Definition and computational complexity”.
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von Stengel and Forges’s Deviations ! With a Reduced Strategy

memory input action, 7;(-)  deviation action, [¢7;](+)

¢(ﬁz) — % 3 1

Now the # of possible memory states (and thus deviations) grows linearly.

@lyon Stengel and Forges, “Extensive-form correlated equilibrium: Definition and computational complexity”.
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Behavioral Deviations: A Flexible
Formalization of von Stengel and
Forges’s Deviations



Behavioral Deviations

¢ — {¢],g : -A<]> — A(I>}information set ],

memory state g
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Behavioral Deviations

memory state: transformation

¢ — IO o ¢3—>1
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Behavioral Deviations

memory state: transformation

¢ . IO - ¢3—>1

I

I 1 - ¢)1—>2v 3 - ¢—>1

Arriving in I, = [¢*7m|(Lp) = 1

— W'i(IO) =1or 7TL'<]0) = &
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Behavioral Deviations

memory state: transformation

¢ L Iy - ¢3—>1

I

I 1 - ¢)1—>2v 3 - ¢—>1

1 3

I
IQC‘N 5 T I3 11:¢%271, 12:¢71, 3x: 921

Arriving in I3 neither requires nor reveals 7;(I;) since ¢! is external /constant.
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Behavioral Deviations

6=

I

1

I
IQN 2 N

I3

memory state: transformation

=W
\,

N\

- ¢3—)1

1 - ¢1—>2' 3 - ¢—>1

11:¢27, 12:¢71, 3x:¢?™!

The action at I; in memory state “3" can be hidden from the deviation player,

but the action at I3 can be revealed.
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Behavioral Deviations

b — Tv c P =
|
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The EFG Deviation Landscape

identity change info internal A/A —— _
behavioral
tree PAN A A

sequence § §

informed icausal action CF blind PS

blind causali %ioni%[zi
%
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Extensive-Form Regret Minimization
(EFR)



Extensive-Form Regret Minimization (EFR)

I EFR works by learning 7f(I) € AMDI

/\
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I How much incentive does the deviation player have to employ
transformations at 17

/N\/\
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Extensive-Form Regret Minimization (EFR)

Memory probability,

i.e., the chance that ¢(m!) reaches I in memory state g.

/_/%
W € g, woL.gimDe [0, 1]
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Extensive-Form Regret Minimization (EFR)

Memory probability,

i.e., the chance that ¢(m!) reaches I in memory state g.

/_/%
W € g, woL.gimDe [0, 1]

I wel,gimd) (or([brgmi)(D)i ) — v (nl(D); 7))

Counterfactual regret, pi* (é1, g;mt).
/\ /\ M’ vr(a; )
w_/

Counterfactual value,

i.e., expected payoff for a assuming ¢ plays to I.
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Extensive-Form Regret Minimization (EFR)

Memory probability,

i.e., the chance that ¢(m!) reaches I in memory state g.
/_/%
W € %0, Wyl gim)e 0.1

I
we(I, g; m}) p§* (1,95 ")

/\ /\ IV&, vr(a;wt)

Counterfactual value,

i.e., expected payoff for a assuming ¢ plays to I.
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Extensive-Form Regret Minimization (EFR)

Memory probability,

i.e., the chance that ¢(m!) reaches I in memory state g.

/_M
JW € 7., 9, wy(I,g;m})€ [0,1]

I
qu(f,g;ﬂf)P?F((f’I,g;Ft) This is a time selection problem! (4]

Va, vy(a;mt)
H/_/

Counterfactual value,
i.e., expected payoff for a assuming i plays to 1.

I Blum and Mansour, “From external to internal regret”.
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Extensive-Form Regret Minimization (EFR)

Memory probability,

i.e., the chance that ¢(m!) reaches I in memory state g.

/_/H
V¢ € (I)I 95 w¢(I g;T z) [07 1]
Our solution:
I ;95T 7, (¢I,ga ) . . .
time selection regret matching.
/\ Va, vr(a;m )

Counterfactual value,

i.e., expected payoff for a assuming 7 plays to I.
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Time Selection Regret Matching

= Sets 7!(I) <+ to be a fixed point of a linear operator, L':
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Time Selection Regret Matching

= Sets 7!(I) <+ to be a fixed point of a linear operator, L':

=il
9”2’1,9 <> we(I, g;7F) pF" (br1,65 ) > Cumulative immediate regret.
k
Yh, Zw¢(l,g; ﬂf)f(.%‘fbkg) > Link output/preference for ¢;.
tAMDl s 5y = Zy¢1¢1 > Convex combination.

= Permits:
= choice of link function f, e.g.,, f(-) = max{0,-} or f(-) =e".
= approximating :rfm’g instead of storing it in a table, and
= predicting the next instantaneous regret for each ¢y 4.

13 /20



EFR: Regret Decomposition

Minimize immediate Minimize immediate

regret at children. regret at parent. ——=> Two-step regret is minimized.
~ - ~ — -~ = ~
/] /]
/ /
/ /
I I I I I OI Or
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Restricting EFR’s Deviations to Improve Efficiency

quf)E@E,g

we(I, g; mt)p§

/\ [Va, vr(a;mt)

, we(I,g;7k) € [0,1]

The # of regrets depends on the
(P15 7")

# of deviations and their realizable

(3mi, wey (I, g; ™) > 0) memory states.
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Restricting EFR’s Deviations to Improve Efficiency

l, wolTgi1t) € 0,1]

! @ . The # of regrets depends on the
woll, g mi)ey (P1.457) # of deviations and their realizable

Pv’a, vr(a;mt)

We can restrict EFR’s deviation set to ® C CIDE to

ensure efficiency and re-construct previous algorithms!

(I, we (1, g; ;) > 0) memory states.
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Reductions to Previous Algorithms

. EFR( ): CFR I
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Reductions to Previous Algorithms

. EFR( ): CFR I
. EFR( >% ICFR 4

+ EFR( ] ) ~ PGPID]

Bl Zinkevich et al., “Regret Minimization in Games with Incomplete Information”.
(] Celli et al., “No-regret learning dynamics for extensive-form correlated equilibrium.
BlSrinivasan et al., “Actor-Critic Policy Optimization in Partially Observable Multiagent Environments”;

Morrill et al., “Hindsight and Sequential Rationality of Correlated Play”.
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New Efficient Variants
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New Efficient Variants

TIPS: EFR

# deviations: O(d.n%).

CFPS: EFR

# deviations: O(d.n%).

5
CSPS: EFR E) # deviations: O(dyn%,).
(1)

BPS: EFR i) # deviations: O(d.n_y).
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A Sample of Representative
Experimental Results
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— ACTy — CFR — TIPS — BHV

18/20



Learning Curves

— ACTy — CFR — TIPS — BHV

goofspiel(5, T, N = 2)

goofspiel(4, T, N = 3)

18 /20



Learning Curves

— ACTy — CFR — TIPS — BHV

goofspiel(5, T, N = 2)

goofspiel(4, T, N = 3)

Sheriff(N = 2)

18 /20



Learning Curves

— ACTy — CFR — TIPS — BHV

oblivious, non-stationary

goofspiel(5, T, N = 2)

goofspiel(4, T, N = 3)

Sheriff(N = 2)

18 /20



Learning Curves
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average payoff
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56.4
41.7
59.8
53.0

46.1—

0.9
0.4
-0.0

oblivious, non-stationary

—

P

e

0 500 1000
rounds
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Learning Curves
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goofspiel(4, T, N = 3)

Sheriff(N = 2)

average payoff

71.0
56.4
41.7
59.8
53.0

46.1—

0.9
0.4
-0.0

oblivious, non-stationary

—

P

e

0 500 1000
rounds

round-robin

18 /20



Learning Curves

— ACTy — CFR — TIPS — BHV

oblivious, non-stationary oAb
71.0 54.11
goofspiel(5, T, N = 2) 56.4 ﬁ 48.3 M
£ 47 425
_ & 59.8 86.4
[0
g 46.1- - : 47.8 - -
(o)
Sheriff(N = 2) 09 05
0.4 0.2
005 500 w00 o 500 1000
rounds rounds
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Conclusions

= Behavioral deviations are natural and expressive.

= EFR is hindsight rational for any given behavioral deviation subset with
computation that scales closely with that set's complexity.

= The partial sequence deviations are efficient and powerful.

= EFR with a stronger deviation type tends to perform better.
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Conclusions

Some remaining challenges:

= Stronger deviation types require more computation.

= Stronger deviation types lead to worse bounds with respect to weaker types.
Possible solutions:

= Characterize the potential benefit of a stronger deviation type in a given game.
= Navigate tradeoffs by using ideas from the fixed-share forecaster [6 and context

tree weighting [7].

I Herbster and Warmuth, “Tracking the best expert”.
[MWillems, Shtarkov, and Tjalkens, “Context tree weighting: a sequential universal source coding procedure

for FSMX sources”.
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Conclusions

Some remaining challenges:

= Stronger deviation types require more computation.
= Stronger deviation types lead to worse bounds with respect to weaker types.

Possible solutions:

= Characterize the potential benefit of a stronger deviation type in a given game.

= Weighting deviation regrets to improve performance with respect to weaker

deviation types.

I Herbster and Warmuth, “Tracking the best expert”.
[MWillems, Shtarkov, and Tjalkens, “Context tree weighting: a sequential universal source coding procedure

for FSMX sources”.
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