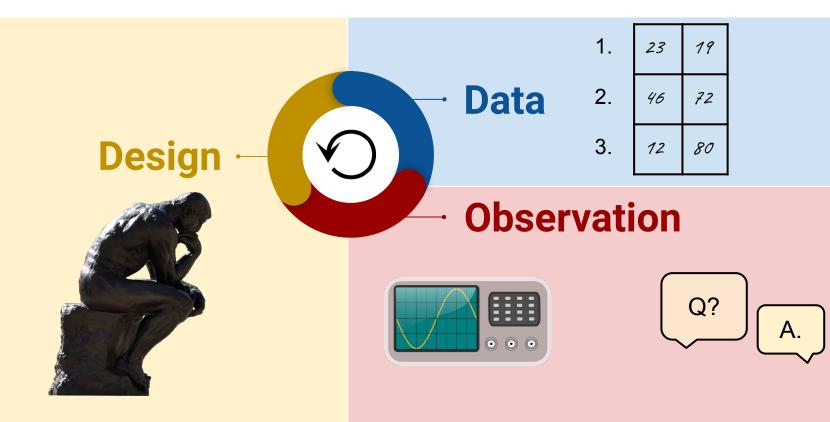
Deep Adaptive Design: Amortizing Sequential Bayesian Experimental Design

Adam Foster* Desi R. Ivanova* Ilyas Malik Tom Rainforth

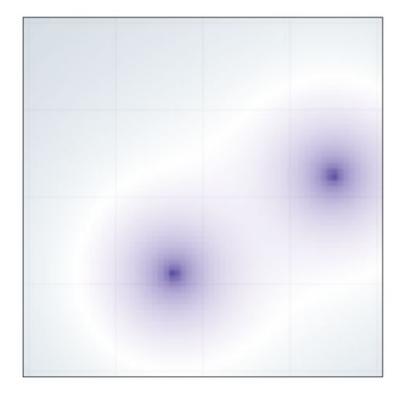
* equal contribution

Deep Adaptive Design (DAD) enables *fast, adaptive* experimentation.

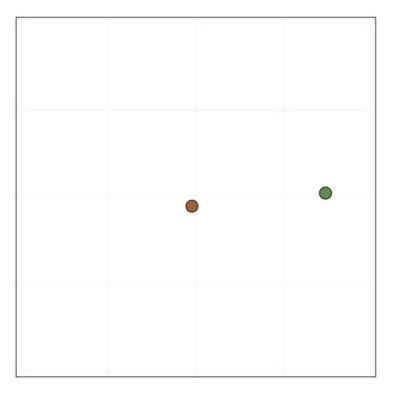
Adaptive experimentation



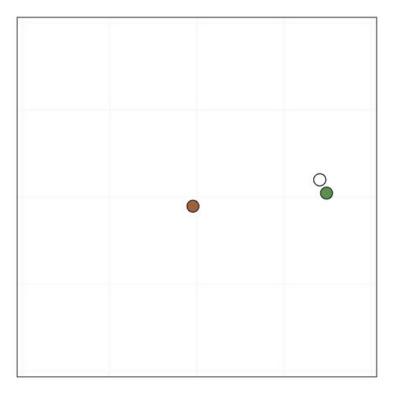
Example: discovering hidden sources



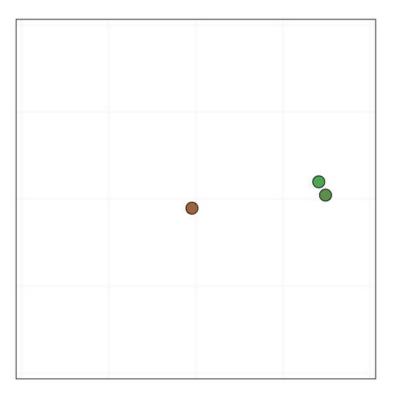
Gather initial data



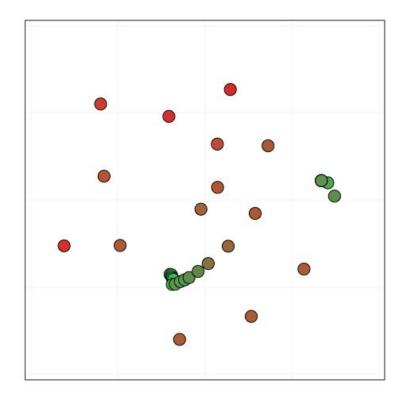
Use past data to select the next design



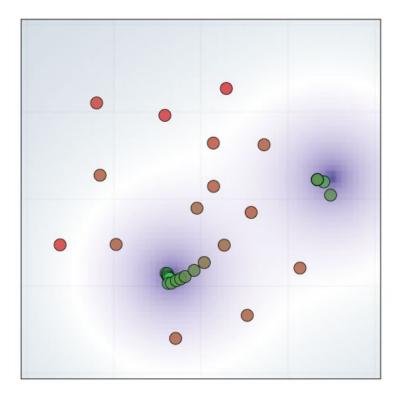
Observe at new design

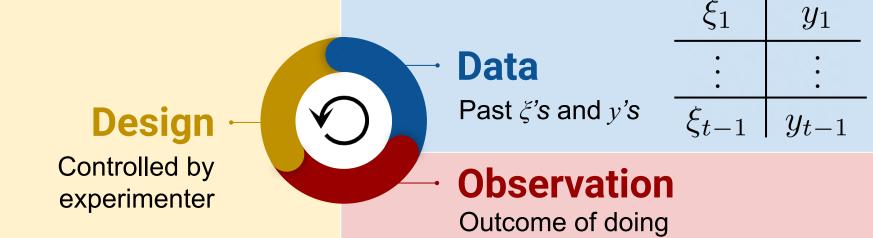


Iterate



Use final data to infer source locations





the experiment at ξ_{t}

 y_t produced with design ξ_t

Goal of the experiment: learn about target of inference θ

Bayesian prior $p(\theta)$

Likelihood model for the outcome of each experiment

$$y_t \sim p(y|\theta, \xi_t)$$

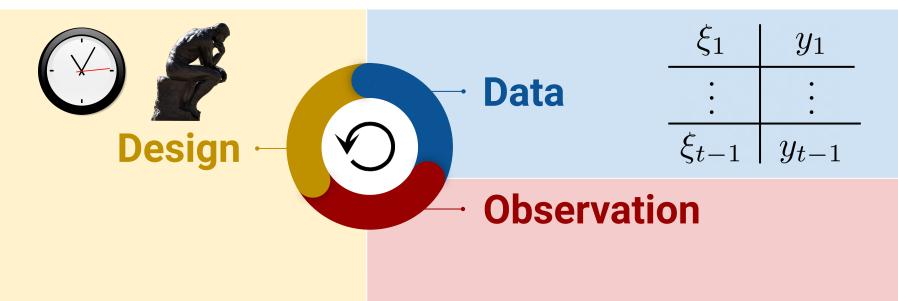
(Gelman et al., 2013; Kruschke, 2014)

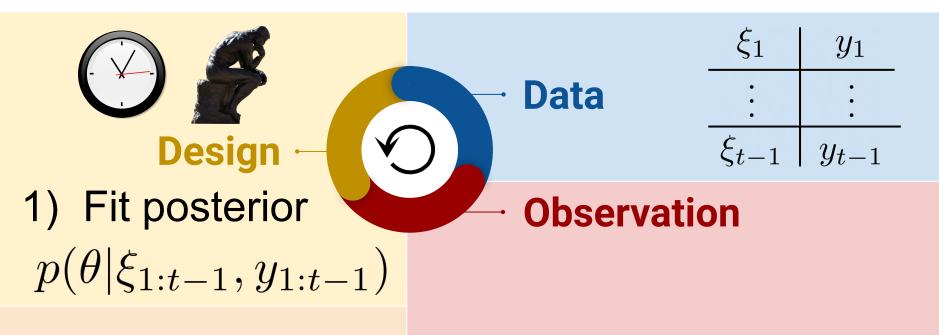
Goal of the experimental design: choose designs so that the gathered data is informative about θ

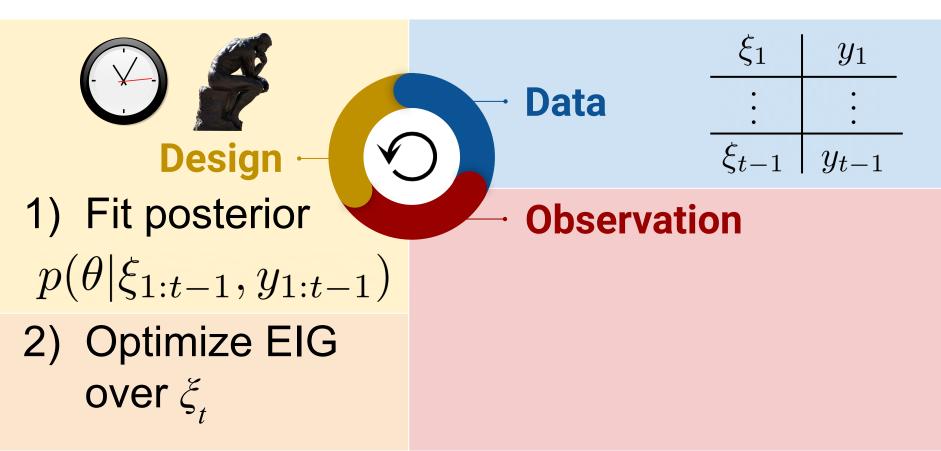
Choose ξ_t to maximize the **expected** information gain (EIG)

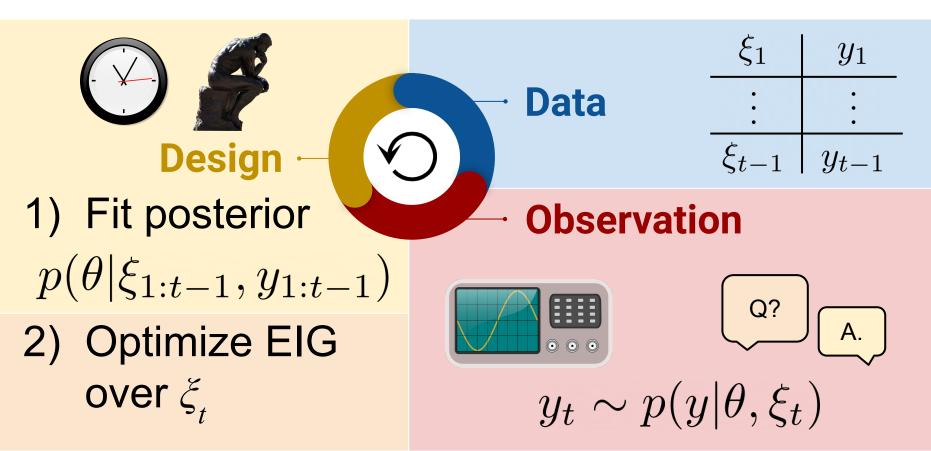
$$\mathbb{E}_{y_t|\xi_t} \left[H[p(\theta|\xi_{1:t-1}, y_{1:t-1})] - H[p(\theta|\xi_{1:t}, y_{1:t})] \right]$$
Posterior
entropy at *t*-1
Posterior
entropy at *t*-1

(Lindley, 1956)

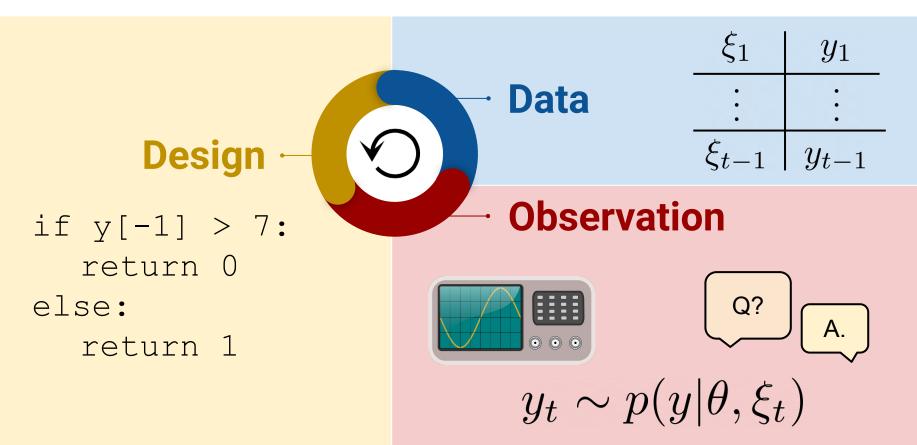


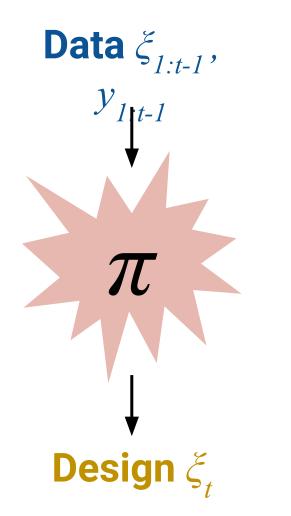






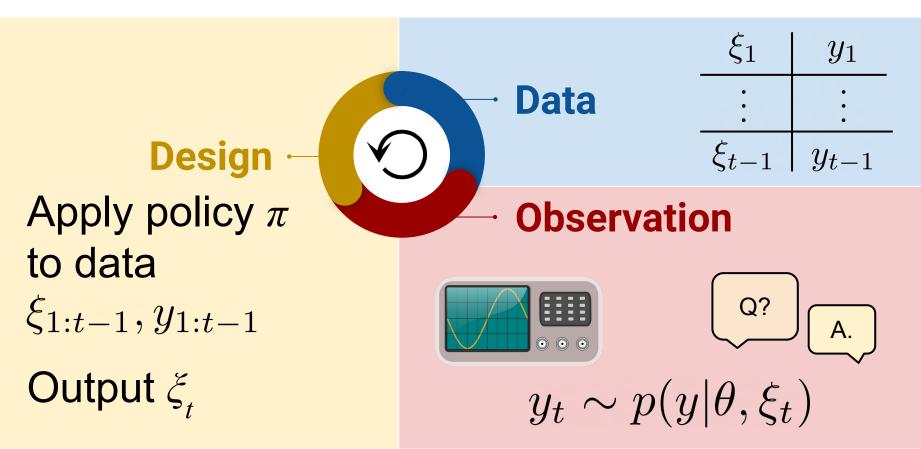
Fast heuristic experimentation



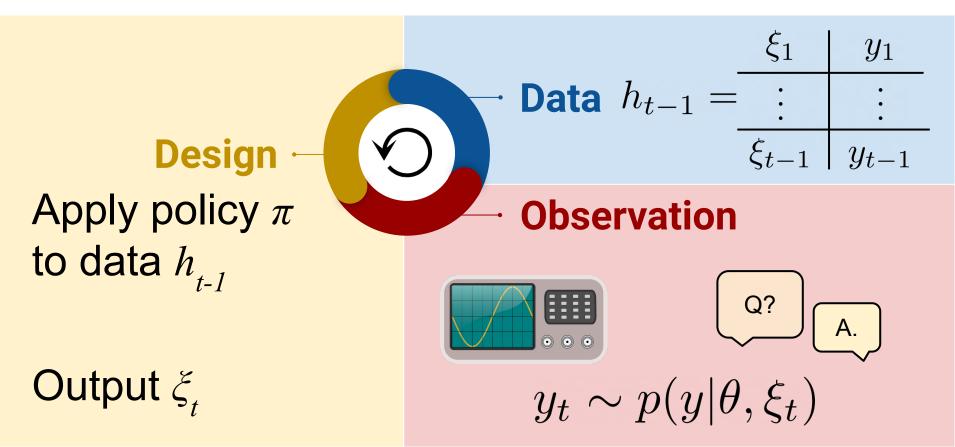


Design Policy

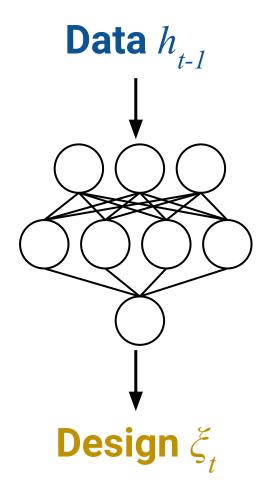
Rethinking with policies



Rethinking with policies



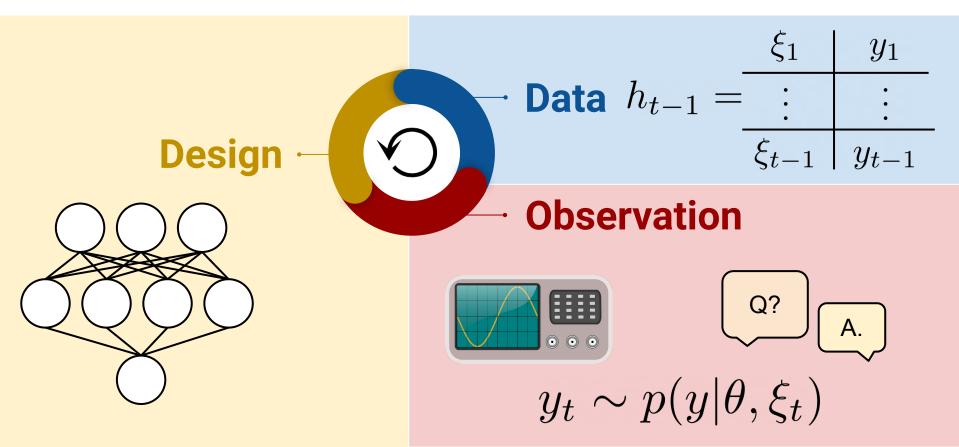
DAD: use a neural network as the design policy



Design Network

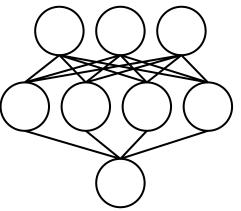
 π

Design policy network



How to train the design network?

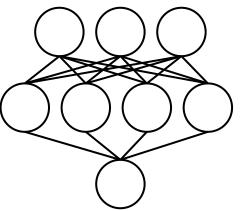
The design network



should amortize slow adaptive design

How to train the design network?

The design network



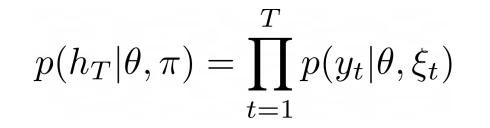
should **maximize** the expected sum of information gains $\mathbb{E}\left[\sum_{t=1}^{T} EIG_{t}\right]$

A unified objective

Theorem 1

The total objective for the design policy is

$$\mathcal{I}_{T}(\pi_{\phi}) = \mathbb{E}\left[\sum_{t=1}^{T} \mathrm{EIG}_{t}\right] = \mathbb{E}_{p(\theta)p(h_{T}|\theta,\pi_{\phi})}\left[\log\frac{p(h_{T}|\theta,\pi_{\phi})}{p(h_{T}|\pi_{\phi})}\right]$$
where



A unified objective

Theorem 1

The total objective for the design policy is

$$\mathcal{I}_{T}(\pi_{\phi}) = \mathbb{E}\left[\sum_{t=1}^{T} \operatorname{EIG}_{t}\right] = \mathbb{E}_{p(\theta)p(h_{T}|\theta,\pi_{\phi})}\left[\log\frac{p(h_{T}|\theta,\pi_{\phi})}{p(h_{T}|\pi_{\phi})}\right]$$
where

$$p(h_T|\theta, \pi) = \prod_{t=1}^T p(y_t|\theta, \xi_t)$$

The DAD approach

Use a **neural net policy** π_{ϕ} and optimize the parameters ϕ to max $\mathcal{I}_T(\pi_{\phi})$

$\mathcal{I}_T(\pi_\phi)$ is not tractable

The DAD approach

Use a **neural net policy** π_{ϕ} and optimize the parameters ϕ to max $\mathcal{I}_T(\pi_{\phi})$

$$\mathcal{I}_T(\pi_{\phi})$$
 is not tractable

Optimize a tractable lower bound $\mathcal{L}_T(\pi_\phi)$

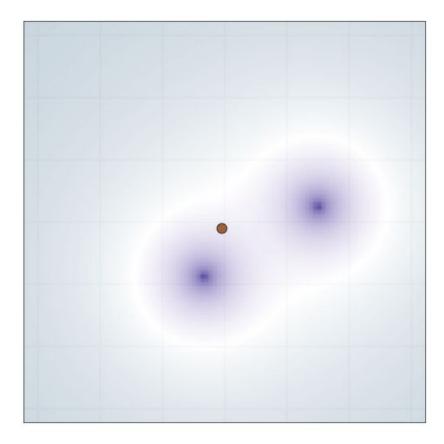
Lower bounding $\mathcal{I}_T(\pi_\phi)$

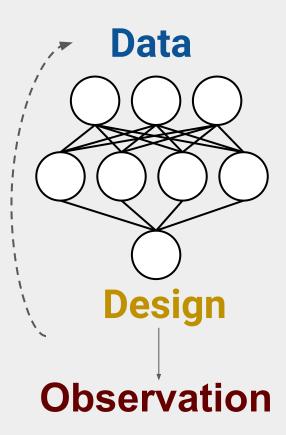
Sequential Prior Contrastive Estimation

 $\mathcal{L}(\pi_{\phi};L) = \mathbb{E}_{p(\theta_0)p(h_T|\theta_0,\pi_{\phi})p(\theta_{1:L})} \left[\log \frac{p(h_T|\theta_0,\pi_{\phi})}{\frac{1}{L+1} \sum_{\ell=0}^{L} p(h_T|\theta_{\ell},\pi_{\phi})} \right]$

Unbiased estimatesUnbiased gradients w.r.t. ϕ Train π_{ϕ} end-to-end with SGA

DAD at work





DAD: key ingredients

Policy network π_{ϕ} Unified objective $\mathcal{I}_T(\pi_{\phi})$ Tractable lower bound $\mathcal{L}_T(\pi_{\phi})$

How well does DAD do?

vs. Traditional BOED approaches DAD Variational myopic* **Policy-based Fixed Strategy** Adaptive X Adaptive Adaptive Real-time Real-time X Real-time

*SG-BOED of Foster et al (2020)

Location finding: Adaptive design

$$\mathcal{L}_{30}(\pi_{\phi}) \quad \mathcal{U}_{30}(\pi_{\phi}) \qquad \begin{array}{l} \text{Deployment} \\ \text{time (sec.)} \end{array}$$

Variational	8.78	8.91	8963 >1mil
DAD	10.93	12.38	0.005 faster

Location finding: Adaptive design

Deployment

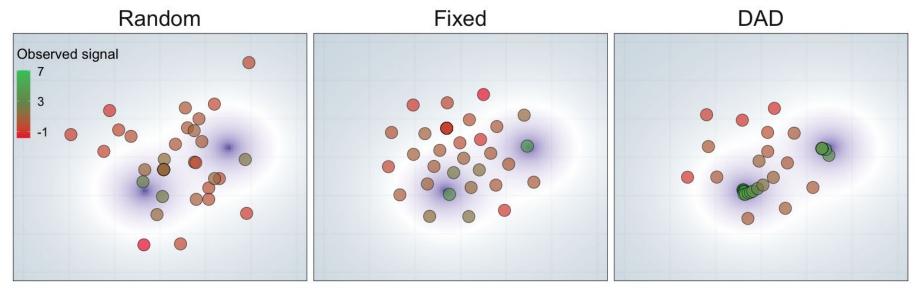
time (sec.)

$$\mathcal{L}_{30}(\pi_{\phi})$$
 $\mathcal{U}_{30}(\pi_{\phi})$

Variational	8.78	8.91	8963 🔨 >1mil
			; times
DAD	10.93	12.38	0.005 🔺 faster

No need for posterior estimation Non-myopic properties of DAD

Location finding: real-time design

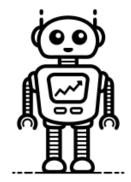


 $\mathcal{L}_{30}(\pi_{\phi}) = 8.30$ $\mathcal{U}_{30}(\pi_{\phi}) = 8.32$ $\mathcal{L}_{30}(\pi_{\phi}) = 8.84$ $\mathcal{U}_{30}(\pi_{\phi}) = 8.91$ $\mathcal{L}_{30}(\pi_{\phi}) = 10.93$ $\mathcal{U}_{30}(\pi_{\phi}) = 12.38$

Al powered by DAD

Would you prefer **\$R** today, or \$100 in **D** days?

$$\xi = (R, D)$$



Al powered by DAD

Would you prefer **\$49** today, or \$100 in **3 months**?

Human participant

Al powered by DAD

Would you prefer **\$49** today, or \$100 in **3 months**?

AI powered by DAD

Would you prefer **\$49** today, or \$100 in **4 weeks**?

Human participant

\$49 today

Human participant

\$49 today

Al powered by DAD

Would you prefer **\$49** today, or \$100 in **3 months**?

AI powered by DAD

Would you prefer **\$49** today, or \$100 in **4 weeks**?

AI powered by DAD

Would you prefer **\$49** today, or \$100 in **16 days**?

\$49 today

Human participant

Human participant

\$49 today

Human participant

\$100 in 16 days

AI powered by DAD

Would you prefer \$49 today, or \$100 in 3 months?

Al powered by DAD

Would you prefer **\$49** today, or \$100 in **4 weeks**?

AI powered by DAD

Would you prefer **\$49** today, or \$100 in **16 days**?

AI powered by DAD

Would you prefer \$49 today, or \$100 in 23 days?

Human participant \$49 today

Human participant

\$49 today

\$100 in 16 days

Human participant

Human participant

\$49 today

Temporal discounting model

AI powered by DAD

Would you prefer **\$49** today, or \$100 in **3 months**?

Al powered by DAD

Would you prefer **\$49** today, or \$100 in **4 weeks**?

AI powered by DAD

Would you prefer **\$49** today, or \$100 in **16 days**?

AI powered by DAD

Would you prefer \$49 today, or \$100 in 23 days?

Human participant

Human participant

Human participant

Human participant

\$100 in 16 days

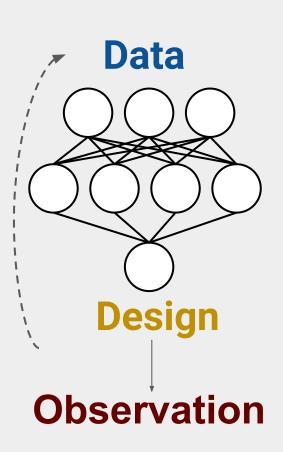
\$49 today

\$49 today

Hyperbolic temporal discounting

$$\mathcal{L}_{30}(\pi_{\phi}) \ \mathcal{U}_{30}(\pi_{\phi}) \ \frac{\text{Deployment}}{\text{time (sec.)}}$$

DAD	5.02	5.12	0.09
Traditional (Vincent & Rainforth 2017)	4.45	4.54	25.27
Heuristic (Frye et al. 2006)	3.50	3.51	0.09



Policy-based Conclusion Amortized Non-myopic **Deep Adaptive Design** Unified Design Tractable network objective lower bound

Adaptive experiments in real-time

Thank you

Implementation in Pyro

Full paper

https://github.com/ae-foster/dad
https://arxiv.org/pdf/2103.02438.pdf