
Deep Adaptive Design:
Amortizing Sequential Bayesian 

Experimental Design
Adam Foster*    Desi R. Ivanova*    Ilyas Malik    Tom Rainforth

* equal contribution

ICML 2021



Deep Adaptive Design (DAD) 
enables 
fast, adaptive experimentation.
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Example: 
discovering 

hidden 
sources
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Weak signal Strong signal

Use final data 
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source 
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Bayesian experimental design
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Bayesian experimental design
Goal of the experiment: learn about 
target of inference θ
Bayesian prior p(θ)
Likelihood model for the outcome of each 
experiment

 (Gelman et al., 2013; Kruschke, 2014)



Bayesian experimental design
Goal of the experimental design: choose 
designs so that the gathered data is informative 
about θ



Bayesian experimental design

 (Lindley, 1956)

Choose ξt to maximize the expected 
information gain (EIG) 

Posterior 
entropy at t-1

Posterior 
entropy at t
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Fast heuristic experimentation
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if y[-1] > 7:
return 0

else:
return 1



Design ξt  

Data ξ1:t-1 , 
y1:t-1

Design Policyπ



Rethinking with policies
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Rethinking with policies
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DAD: use a neural network as the 
design policy
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Design policy network
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How to train the design 
network?
The design network

should amortize slow adaptive design



How to train the design 
network?
The design network

should maximize the expected sum of 
information gains



A unified objective
Theorem 1
The total objective for the design policy is

where



A unified objective
Theorem 1
The total objective for the design policy is

where



The DAD approach
Use a neural net policy πϕ and optimize the 
parameters ϕ to max 

! is not tractable



The DAD approach
Use a neural net policy πϕ and optimize the 
parameters ϕ to max 

! is not tractable

Optimize a tractable lower bound



Lower bounding 
Sequential Prior Contrastive Estimation 

Unbiased estimates

Unbiased gradients w.r.t. ϕ

Train πϕ end-to-end with SGA 



Weak signal Strong signal

DAD at work



DAD: key ingredients 

Policy network   

Design

Data

Observation

Unified objective   

Tractable lower bound   



How well does DAD do? 

    DAD        vs.  Traditional  BOED  approaches

*SG-BOED of Foster et al (2020)

Adaptive

Real-time

Adaptive

Real-time

Fixed StrategyVariational myopic*Policy-based
Adaptive

Real-time



Deployment 
time (sec.)

Variational 08.78 08.91 8963

DAD 10.93 12.38 0.005

>1mil 
times 
faster

Location finding: Adaptive design 



Deployment 
time (sec.)

Variational 08.78 08.91 8963

DAD 10.93 12.38 0.005

>1mil 
times 
faster

Location finding: Adaptive design 

No need for posterior estimation 
Non-myopic properties of DAD 



Location finding: real-time design



Adaptive online surveys
Would you prefer $R today, or $100 in D days?

AI powered by DAD
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Would you prefer $49 today, or $100 in 3 months?
AI powered by DAD

Human participant

$49 today

Would you prefer $49 today, or $100 in 4 weeks?
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$49 today
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$49 today

Temporal discounting model



Hyperbolic temporal discounting
Deployment 
time (sec.)

Heuristic 
(Frye et al. 2006) 3.50 3.51 00.09

Traditional (Vincent & 
Rainforth 2017) 4.45 4.54 25.27

DAD 5.02 5.12 00.09



Deep Adaptive Design

Adaptive experiments in real-time

Design

Data

Observation

Conclusion Policy-based
Amortized

Non-myopic

Unified
objective

Design 
network

Tractable 
lower bound



Implementation in Pyro 
Full paper 

https://github.com/ae-foster/dad

https://arxiv.org/pdf/2103.02438.pdf

Thank you


