Mediated Uncoupled Learning: Learning Functions without Direct Input-output Correspondences

Ikko Yamane¹² Junya Honda³² Florian Yger¹² Masashi Sugiyama²⁴

The 38th International Conference on Machine Learning (ICML 2021)
July 22, 2021

¹ LAMSADE, PSL Université Paris-Dauphine, Paris, FRANCE

² RIKEN AIP, Tokyo, JAPAN

³ Kyoto University, Kyoto, JAPAN

⁴ The University of Tokyo, Tokyo, JAPAN

Limitation of standard supervised learning

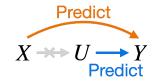
- Standard supervised learning
 - Goal: predict output r.v. Y from input r.v. X
 - Requires: (X, Y)-pairs

- However, they can be difficult to collect
 - Annotating images X with sentiment labels Y
 - Collecting translations between minor languages X and Y
 - Labeling low-quality images X (Y being the class labels)

Our Setup: Mediated Uncoupled Learning

- Mediated uncoupled learning
 - Goal: predict output r.v. Y from input r.v. X
 - Requires: (X, U)-pairs and (U', Y')-pairs with some r.v. U (U', Y') and (U, Y) are independent but follow the same distribution
- Observe Observe

 X
 V
 Predict


- It can be easier to collect such data:
 - (image X with text caption U) & (text U', sentiment label Y')
 - (text in minor language X, translation in a major language U)
 & (translation in a major language U', text in minor language Y)
 - (low-quality image X, its high-quality version U)
 & (high-quality image U', class label Y')

Naive Method

$$X \longrightarrow U \longrightarrow Y$$
Predict Predict

- 1. Learn $X \to U$ as $\widehat{u}(x)$ using (X, U)-pairs
- 2. Learn $U \to Y$ as $\hat{y}(u)$ using (U, Y)-pairs
 - Prediction: $\hat{y}(\hat{u}(X))$
- However, it is statistically inconsistent
 - Generative models with numerical integration are necessary to correct the inconsistency
 - which needs delicate modeling and training
 - and prediction will be computationally expensive
- When U is complex such as images or texts, learning $X \rightarrow U$ is not easy

Proposed Method

- Avoid predicting U which causes the issues
- Two-step Regressed Regression (2Step-RR)
- 1. Learn $U \to Y$ as $\hat{y}(u)$ using (U, Y)-pairs
- 2. Learn $X \to \widehat{y}(U)$ as $\widehat{y}_{RR}(u)$ using (X, U)-pairs
- Statistical consistency and an error bound when E[Y | U, X] = E[Y | U]

Y: "automobile We use downsampled images for X and the original ones for U

U-Net (Ronneberger et al. 2015) for $X \rightarrow U$

ResNets (He et al. 2016) for $U \rightarrow Y$ and $X \rightarrow Y$

the two steps of 2Step-RR						
	Dataset	Naive	2Step-RR	Joint-RR		
	NANUCT	00.070/ (4.40)	0/ 400/ /0 0/)	0/ 040/ (0.00)		

the two s	the two steps of 2Step-RR				
Dataset	Naive	2Step-RR	Joint-RR		
MNIST	88.06% (1.13)	96.19% (0.26)	96.34% (0.28)		

the two s	teps of 2Step-RR		
Dataset	Naive	2Step-RR	Joint-RR
NANUCT	00.070/ (4.40)	0/400/ (0.27)	0(040/ (0 00)

Fashion-MNIST

73.12% (0.37) 85.53% (0.16) 86.93% (0.14)

CIFAR-10

48.35% (0.28) 67.60% (0.13) **69.10%** (0.11)

27.43% (0.08)

28.05% (0.08)

19.97% (0.12)

CIFAR-100

Summary

- Learning with separate observations of X and Y with a mediating variable U
- The proposed approach that avoids predicting *U* outperforms the naive method
- Joint training can further improve the performance
- Latest version: https://arxiv.org/pdf/2107.08135.pdf
- Our code can be found at https://github.com/i-yamane/mediated_uncoupled_learning

