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Overarching Question: What is the best performance any classifier can achieve in
the presence of a worst-case perturbation?
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Data distribution and Attack

v3 - Data (in Rd) is drawn from two
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sampling probability for each
point

- Attacker perturbs data in£2
ball around each datapoint
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Generic convex solver
Tractable in theory, but too slow in

practice (~13 hours for complete
2-class CIFAR-10)

Custom algorithm
Simultaneously finds both the
optimal classifier (primal) and
attack (dual)

Achieves 1000x speed-up by
- iteratively splitting graph into
portions where probs. are
over/under-estimated
- Utilizing the bipartite graph
structure
Enables the computation of lower
bounds in a vast range of settings
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Paper: Code:
https://arxiv.org/abs/2104.08382 https://github.com/arjunbhagoji/log-
loss-lower-bounds
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