Skill Discovery for Exploration and Planning using Deep Skill Graphs

Akhil Bagaria, Jason Senthil, George Konidaris Brown University

Long Horizon Problems

• Problems:

- Complex **observation** space
- Difficult decision space
- Very **sparse** reward function

- Solutions:
 - State and action **abstractions**
 - Propose your own goals and learn to reach them

Options as a basis for state and action abstractions

Skills = modular closed loop control policies

 $\mathcal{O} = (\mathcal{J}_o, \pi_o, \beta_o)$

Deep Skill Chaining Algorithm (Konidaris & Barto, '09; Bagaria & Konidaris '20)

Skill graph

Skill Graph: Usefulness

- Training time: Graph construction procedure ensured coverage (i.e, exploration)
- Test time: If the goal is inside the graph, use planning to reach it
- Test time: If the goal is outside the graph, plan to the nearest node, then switch to learning

Algorithm Overview

Exploration objective

How can we **add a node** such that we **maximally increase coverage** of the state-space?

Random Sampling! (RRTs)

Randomly sample a state from the state-space

Identify the nearest neighbor in the graph

Extend the graph in the direction of the random goal

Expansion towards Frontier

Why does it work? The node with the biggest voronoi region is chosen for expansion

Use planner inside the graph to reach the nearest neighbor

Use model-based RL to move K steps in the *direction* of goal

Add the resulting state as a node in the graph

Use deep skill chaining to connect the new goal node to the existing graph

Graph Expansion Algorithm **g1** Test time: if the goal is inside the graph, just plan with learned skills

Graph Expansion Algorithm 92 **g1** Test time: if the goal is outside the graph, plan to the nearest node and then switch to DSC

Experimental Setup

Training Time: No reward function - unsupervised training

Testing Time: Rewarded for reaching random goal states from random start states

Incremental Graph Expansion

To visualize nodes, we plot the median state of their termination conditions

Solution Trajectories

Comparative Analysis

- Flat model-free: Hindsight Experience Replay (HER, HER*)
- Flat model-based: **MB**, **MB*** [1]
- Hierarchical model-free: Hierarchical Actor-Critic (HAC)
- Hierarchical model-based: Dynamics Aware Unsupervised Discovery of Skills (DADS)

[1] Nagabandi, A., Kahn, G., Fearing, R. S., and Levine, S. Neural network dynamics for model-based deep reinforcement learning with model-free fine-tuning, ICRA 2018

Conclusion

- Skill graphs abstract large continuous MDPs into small discrete ones suitable for planning
- Skill graph expands incrementally outward from the start state — high-level exploration
- DSG uses **planning** to get to the **frontier** and then explores

Conclusion

- Skill graphs abstract large continuous MDPs into small discrete ones suitable for planning
- Skill graph **expands incrementally** outward from the start state high-level exploration
- DSG uses **planning** to get to the **frontier** and then explores

