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|_.ong Horizon Problems

* Problems:
e Complex observation space
e Difficult decision space

e \Very sparse reward function

e Solutions:

e State and action abstractions

e Propose your own goals and
learn to reach them



Options as a basis for state
andactlonabstractlons

[Sutton, Precup and Singh, 1999]



Skill Discovery
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Skill chain Skill tree

Deep Skill Chaining Algorithm (Konidaris & Barto, ‘09; Bagaria & Konidaris ‘20)
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Skill graph



SKill Graph: Definition
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Skill Graph: Usefulness
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- Training time: Graph construction procedure ensured coverage (i.e, exploration)

- Test time: If the goal is inside the graph, use planning to reach it

- Test time: If the goal is outside the graph, plan to the nearest node,
then switch to learning



Algorithm Overview




Graph Expansion Algorithm

Exploration objective

How can we add a node such that we maximally
increase coverage of the state-space?




Graph Expansion Algorithm
w

Randomly sample a state from the state-space



Graph Expansion Algorithm
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Identify the nearest neighbor in the graph



Graph Expansion Algorithm
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Extend the graph in the direction of the random goal



EXpansion towards Frontier
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Why does it work? The node with the biggest voronoi
region is chosen for expansion



Graph Expansion Algorithm
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Use planner inside the graph to reach the neares t neighbor



Graph Expansion Algorithm
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Graph Expansion Algorithm
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Add the resulting state as a node in the graph



Graph Expansion Algorithm




Graph Expansion Algorithm

Test time: if the goal is inside the graph, just plan with
learned skills



Graph Expansion Algorithm

Test time: if the goal is outside the graph, plan to the nearest
node and then switch to DSC



Experimental Setup
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Training Time: No reward function - unsupervised training

Testing Time: Rewarded for reaching random goal states from random start states




Incremental Graph Expansion

To visualize nodes, we plot the median state of their termination conditions



Solution Trajectories
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Comparative Analysis

* Flat model-free: Hindsight Experience Replay (HER, HER?)
 Flat model-based: MB, MB* [1]
e Hierarchical model-free: Hierarchical Actor-Critic (HAC)

* Hierarchical model-based: Dynamics Aware Unsupervised
Discovery of Skills (DADS)

[1] Nagabandi, A., Kahn, G., Fearing, R. S., and Levine, S. Neural network dynamics for model-based deep
reinforcement learning with model-free fine-tuning, ICRA 2018



Ant Reacher Ant U-Maze
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Conclusion

e Skill graphs abstract large continuous MDPs into small
discrete ones suitable for planning

e Skill graph expands incrementally outward from the start
state — high-level exploration

e DSG uses planning to get to the frontier and then explores
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