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Online Convex Optimization (OCO)

Online convex optimization [Zinkevich, ICML, 2003]

1: for t = 1 to T do

2: Learner picks a decision xt ∈ X
Adversary picks a convex function ft : X → R

3: Learner suffers a loss ft(xt) and updates xt

4: end for

Cumulative loss (CL): ∑T

t=1
ft(xt)

Learner picks xt before knowing ft

Learner is impossible to minimize CL directly

Learner’s objective: choose {xt} s.t. regret grows sublinearly
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Reg({xt}, {yt}) =
∑T

t=1
ft(xt)︸ ︷︷ ︸

CL of an online learner

−
∑T

t=1
ft(yt)︸ ︷︷ ︸

CL of a comparator sequence

Static regret: {yt} = {x∗}, where x∗ = arg minx∈X
∑T

t=1
ft(x)

Dynamic regret: {yt} = {x∗t }, where x∗t = arg minxt∈X ft(xt)
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Optimal Regret Bound

Online gradient descent (OGD) [Zinkevich, ICML, 2003]

1: for t = 1 to T do
2: Learner picks a decision xt ∈ X

Adversary chooses a convex function ft : X → R
3: Learner suffers a loss ft(xt)

and updates
xt+1 = PX (xt − α∇ft(xt))

4: end for

Projection operator: PX (x) = arg min
y∈X

‖x− y‖

Optimal static regret bound: O(
√
T )
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Adversary chooses a convex function ft : X → R
3: Learner suffers a loss ft(xt) and updates

xt+1 = PX (xt − α∇ft(xt))
4: end for

Optimal static regret bound: O(
√
T )

Ader [Zhang et al., NeurIPS, 2018]

Run OGD multiple times in parallel, each with a different stepsize
Choose the best one using an expert-tracking algorithm

Optimal regret bound: O(
√
T (1 + PT ))

Path-length of comparator sequence: PT =
∑T−1

t=1
‖yt+1 − yt‖
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OCO with Long Term Constraints

Online gradient descent: xt+1 = PX (xt − α∇ft(xt))

Projection operator: PX (x) = arg min
y∈X

‖x− y‖

Bottleneck is the computational cost of PX (·)
X is a simple set, e.g., a box or a ball
X = {x : g(x) ≤ 0m, x ∈ X}

X = {x : g(x) ≤ 0m︸ ︷︷ ︸
“Soft” constraint

, x ∈ X︸ ︷︷ ︸
“Hard” constraint

}

“Soft” constraint could be violated sometimes, but must be
satisfied in the long run
“Hard” constraint must be satisfied in each round

OCO with long term constraints [Mahdavi et al., JMLR, 2012]

Learner’s objective is to choose {xt} s.t. both regret and
constraint violation grow sublinearly

Constraint violation: ‖[
∑T

t=1 g(xt)]+‖, where [·]+ = PRd
+

(·)
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Stricter Metric: Cumulative Constraint Violation

Constraint violation: ‖[
∑T

t=1g(xt)]+‖

Drawback: constraint violations at some rounds can be
compensated by strictly feasible decisions at other rounds

Cumulative constraint violation [Yuan & Lamperski, NeurIPS, 2018]:
‖

∑T
t=1 [g(xt)]+‖
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State-of-the-ArtRegret and Cumulative Constraint Violation Analysis for Online Convex Optimization with Long Term Constraints

Table 1: Comparison of this paper to related works on online convex optimization with long term constraints.

Reference Loss functions Static regret Regret Constraint
violation

Cumulative
constraint
violation

Mahdavi
et al. (2012) Convex O(

√
T ) Not given O(T 3/4) Not given

Jenatton
et al. (2016)

Convex O(Tmax{c,1−c})
Not given O(T 1−c/2) Not given

Strongly convex O(T c)

Yuan &
Lamperski

(2018)

Convex O(Tmax{c,1−c})
Not given

O(T 1−c/2)

Strongly convex O(log(T )) O(
√

log(T )T )

Yu & Neely
(2020) Convex O(

√
T ) Not given O(T 1/4) Not given

Table 2: Comparison of this paper to related works on online convex optimization with long term constraints.

Reference Loss functions Static regret Regret Constraint
violation

Cumulative
constraint
violation

Mahdavi
et al. (2012) Convex O(
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(2018)
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O(T 1−c/2)

Strongly convex O(log(T )) O(
√

log(T )T )

Yu & Neely
(2020) Convex O(

√
T ) Not given O(T 1/4) Not given

Algorithm 2
Convex O(Tmax{c,1−c}) O(

√
T (1+PT )) O(T (1−c)/2)

Strongly convex O(log(T )) Not given O(log(T ))

Algorithm 3 Convex O(Tmax{c,1−c}) O(
√
T (1 + PT )) O(

√
T )

=
∥∥∥

T∑

t=1

[g(xt)]+

∥∥∥
1
≤ √m

∥∥∥
T∑

t=1

[g(xt)]+

∥∥∥.

Moreover, it is straightforward to see that the cumula-
tive constraint violation (6) is stricter than the cumulative
squared constraint violation (5) when the constraint func-
tions are bounded.

Contributions: This paper first proposes a novel algorithm
(Algorithm 2) for the problem of online convex optimiza-
tion with long term constraints. This algorithm achieves
an O(Tmax{c,1−c}) static regret bound and an O(T (1−c)/2)
cumulative constraint violation bound, where c ∈ (0, 1) is a
user-defined trade-off parameter, and hence yields improved
performance compared with the results in Mahdavi et al.
(2012); Jenatton et al. (2016); Yuan & Lamperski (2018); Yu
& Neely (2020). This algorithm is inspired by Yu & Neely
(2020) and is the first to achieve a cumulative constraint vio-
lation bound strictly better than O(T 3/4) while maintaining

O(
√
T ) regret for convex loss functions. Both static re-

gret and cumulative constraint violation bounds are reduced
to O(log(T )) when the loss functions are strongly convex,
which also improves the results in Jenatton et al. (2016);
Yuan & Lamperski (2018). This algorithm is also the first
to achieve a cumulative constraint violation bound strictly
better than O(

√
log(T )T ) while maintaining O(log(T ))

regret for strongly convex loss functions.

In order to achieve the optimal regret with respect to any
comparator sequence, another algorithm (Algorithm 3) is
then proposed and it achieves the optimal O(

√
T (1 + PT ))

regret and an O(
√
T ) cumulative constraint violation. This

algorithm is inspired by Zhang et al. (2018a). The basic
idea of the second algorithm is to run the first algorithm
multiple times in parallel, each with a different stepsize that
is optimal for a specific path-length, and then to combine
them with an expert-tracking algorithm. This algorithm is
the first to avoid computing the projection PX (·) by consid-

Questions
(i) Can cumulative constraint violation be reduced?
(ii) Can optimal regret and sublinear cumulative constraint violation

be achieved?
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MotivationRegret and Cumulative Constraint Violation Analysis for Online Convex Optimization with Long Term Constraints

Table 3: Comparison of this paper to related works on online convex optimization with long term constraints.

Reference Loss functions Static regret Regret Constraint
violation

Cumulative
constraint
violation

Mahdavi
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T ) Not given O(T 3/4) Not given

Jenatton
et al. (2016)

Convex O(Tmax{c,1−c})
Not given O(T 1−c/2) Not given

Strongly convex O(T c)

Yuan &
Lamperski

(2018)

Convex O(Tmax{c,1−c})
Not given

O(T 1−c/2)

Strongly convex O(log(T )) O(
√

log(T )T )

Yu & Neely
(2020) Convex O(

√
T ) Not given O(T 1/4) Not given

ering long term constraints while maintaining the optimal
regret and sublinear cumulative constraint violation.

In summary, the presented results are significant theoreti-
cal developments compared to prior works. The compari-
son of this paper to related studies in the literature is sum-
marized in Table 2. Specifically, Mahdavi et al. (2012)
achieved an O(

√
T ) static regret bound and an O(T 3/4)

constraint violation bound. Jenatton et al. (2016) achieved
an O(Tmax{c,1−c}) static regret bound and an O(T 1−c/2)
constraint violation bound, which generalized the results in
Mahdavi et al. (2012), and the static regret bound was re-
duced toO(T c) when the cost functions are strongly convex.
Yuan & Lamperski (2018) achieved an O(Tmax{c,1−c})
static regret bound and anO(T 1−c/2) cumulative constraint
violation bound, which further generalized the results in Je-
natton et al. (2016) by using the stricter constraint violation
metric, and these two bounds were respectively reduced to
O(log(T )) and O(

√
log(T )T ) when the cost functions are

strongly convex, which improved the results in Jenatton et al.
(2016). Yu & Neely (2020) achieved anO(

√
T ) static regret

bound and an O(T 1/4) constraint violation bound, which
improved the results in Mahdavi et al. (2012); Jenatton et al.
(2016).

Outline: The rest of this paper is organized as follows.
Section 2 formulates the considered problem. Section 3 pro-
poses two algorithms to solve the problem and analyze their
regret and cumulative constraint violation bounds. Section 4
gives numerical simulations. Finally, Section 5 concludes
the paper and proofs are given in Appendix.

Notations: All inequalities and equalities throughout this
paper are understood componentwise. X T is the T -fold
Cartesian product of a set X . Rp and Rp+ stand for the set of
p-dimensional vectors and nonnegative vectors, respectively.
N+ denotes the set of all positive integers. [T ] represents
the set {1, . . . , T} for any positive integer T . ‖ · ‖ (‖ · ‖1)
represents the Euclidean norm (1-norm) for vectors and

the induced 2-norm (1-norm) for matrices. x> denotes the
transpose of a vector or a matrix. 〈x, y〉 represents the stan-
dard inner product of two vectors x and y. 0m denotes the
column zero vector with dimension m. [z]+ represents the
component-wise projection of a vector z ∈ Rp onto Rp+. d·e
and b·c denote the ceiling and floor functions, respectively.

2. Problem Formulation
2.1. Basic Definitions

Definition 1. Let f : Dom → R be a function, where the
set Dom ⊂ Rp. A vector g ∈ Rp is called a subgradient of
function f at point x ∈ Dom if

f(y) ≥ f(x) + 〈g, y − x〉, ∀y ∈ Dom . (7)

Throughout this paper, we use ∂f(x) to denote the sub-
gradient of f at x. Similarly, for a vector function f̃ =
(f1, . . . , fm)> : Dom → Rm, its subgradient at point
x ∈ Dom is denoted as

∂f̃(x) =




(∂f1(x))>

(∂f2(x))>

...
(∂fm(x))>


 ∈ Rm×p.

Moreover, it is straightforward to check that ∂[f(x)]+ is the
subgradient of [f ]+ at x, where

∂[f(x)]+ =

{
0p, if f(x) < 0

∂f(x), otherwise.

2.2. Problem Formulation

This paper considers the problem of online convex opti-
mization with long term constraints. Let X ⊆ Rp be the
constrained set and g : X → Rm be the constrained func-
tion, where p and m are positive integers. Both X and g are

Questions
(i) Can cumulative constraint violation be reduced?
(ii) Can optimal regret and sublinear cumulative constraint violation

be achieved?
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Basic Approach

Regret and Cumulative Constraint Violation Analysis for Online Convex Optimization with Long Term Constraints

known in advance. SupposeX = {x : g(x) ≤ 0m, x ∈ X}
is non-empty. Let {ft : X→ R} be a sequence of loss func-
tions and each ft is unknown until the end of round t. The
goal of this paper is to propose online algorithms to choose
xt ∈ X for each round t such that both regret and cumu-
lative constraint violation grow sublinearly with respect to
T .

We make the following standing assumptions on the loss
and constraint functions.

Assumption 1. The set X is convex and closed. The func-
tions ft and g are convex.

Assumption 2. There exists a positive constant F such that

|ft(x)− ft(y)| ≤ F, ‖g(x)‖ ≤ F, ∀t ∈ N+, x, y ∈ X.
(8)

Assumption 3. The subgradients ∂ft(x) and ∂g(x) exist.
Moreover, they are uniformly bounded on X, i.e., there exists
a positive constant G such that

‖∂ft(x)‖ ≤ G, ‖∂g(x)‖ ≤ G, ∀t ∈ N+, x ∈ X. (9)

From (8), we know that the cumulative constraint viola-
tion (6) is stricter than the cumulative squared constraint
violation (5) due to

T∑

t=1

‖[g(xt)]+‖2 ≤ F
T∑

t=1

‖[g(xt)]+‖.

Algorithm 1 [Yu &Neely, JMLR, 2020]

Input: α > 0 and γ > 0.
Initialize: q0 = 0m and x1 ∈ X.
for t = 2, . . . do

Observe ∂ft−1(xt−1).
Update

qt−1 = max{−γg(xt−1), qt−2 + γg(xt−1)},
q̂t−1 = qt−1 + γg(xt−1),

xt = arg min
x∈X

{α〈∂ft−1(xt−1), x〉

+ α〈q̂t−1, γg(x)〉+ ‖x− xt−1‖2}.
end for
Output: {xt}.

3. Main results
In this section, we propose two novel algorithms for the con-
strained online convex optimization problem formulated in
Section 2, and analyze their regret and cumulative constraint
violation bounds.
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sequence {αi,t} ⊆ (0,+∞) and non-decreasing se-
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i(i+1)N , ∀i ∈
[N ], and x1 =

∑N
i=1 wi,1xi,1.
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Properties of Basic Approach: Convex
Theorem 1
Let αt = α0/t

c and γ = γ0/
√
αt, where α0 > 0, c ∈ (0, 1), and

γ0 ∈ (0, 1/(
√

2G)] are constants. Then,
Reg({xt}, {yt}) = O(α0T

1−c + T c(1 + PT )/α0),∑T

t=1
‖[g(xt)]+‖ = O(

√
α0T

(1−c)/2).

(i) Choosing α0 = 1 yields

Reg({xt}, {x∗}) = O(Tmax{c,1−c}),∑T

t=1
‖[g(xt)]+‖ = O(T (1−c)/2) < O(T 1−c/2).

State-of-the-art result [Yuan & Lamperski, NeurIPS, 2018]

Reg({xt}, {x∗}) = O(Tmax{c,1−c}),∑T

t=1
‖[g(xt)]+‖ = O(T 1−c/2).
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√
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t=1
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Properties of Basic Approach: Convex

Theorem 1
Let αt = α0/t

c and γ = γ0/
√
αt, where α0 > 0, c ∈ (0, 1), and

γ0 ∈ (0, 1/(
√

2G)] are constants. Then,
Reg({xt}, {yt}) = O(α0T

1−c + T c(1 + PT )/α0),∑T

t=1
‖[g(xt)]+‖ = O(

√
α0T

(1−c)/2).

(ii) If PT is known, choosing α0 =
√

1 + PT and c = 0.5 yields

Reg({xt}, {yt}) = O(
√
T (1 + PT )), Optimal regret bound∑T

t=1
‖[g(xt)]+‖ = O(T 1/4(1 + PT )1/4) ≤ O(

√
T ).

Yi et al. | ICML 2021 | Algorithms 7/15



Properties of Basic Approach: Strongly Convex

Recall: Theorem 1
Let αt = α0/

√
t and γ = γ0/

√
αt, where α0 > 0 and

γ0 ∈ (0, 1/(
√

2G)] are constants. Then,

Reg({xt}, {x∗}) = O(
√
T ),

∑T

t=1
‖[g(xt)]+‖ = O(T 1/4).

Theorem 2
Suppose each ft(·) is strongly convex. Let αt = 1/(µt) and
γ = γ0/

√
αt, where γ0 ∈ (0, 1/(

√
2G)] are constants. Then,

Reg({xt}, {x∗}) = O(log(T )),
∑T

t=1
‖[g(xt)]+‖ = O(log(T )).

State-of-the-art result [Yuan & Lamperski, NeurIPS, 2018]

Each ft(·) is strongly convex:

Reg({xt}, {x∗}) = O(log(T )),
∑T

t=1
‖[g(xt)]+‖ = O(

√
T log(T )).
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Improved Approach: Motivation

Recall: Theorem 1
If PT is known in advance, choosing αt =

√
(1 + PT )/t yields

Reg({xt}, {yt}) = O(
√
T (1 + PT )),∑T

t=1
‖[g(xt)]+‖ = O(T 1/4(1 + PT )1/4).

Question: PT =
∑T−1

t=1
‖yt+1 − yt‖ is normally unknown

Solution
Design N = log2(

√
T ) different stepsizes αi,t = 2i−1/

√
t:

∃i0 ≤ N , s.t. αi0,t is close to the optimal stepsize
√

(1 + PT )/t
Run Algorithm 1 N times in parallel, each with stepsize αi,t

Choose the optimal one using an expert-tracking algorithm
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Improved Approach
Algorithm 2

Input: N ∈ N+, β > 0, {αi,t > 0} and {γi,t > 0}.
Initialize: qi,0 = 0m, xi,1 ∈ X, wi,1 = N+1

i(i+1)N , ∀i ∈
[N ], and x1 =

∑N
i=1 wi,1xi,1.

for t = 2, . . . do
Observe ∂ft−1(xt−1).
Update
qi,t−1 = qi,t−2 + [γi,tg(xi,t−1)]+,

q̂i,t−1 = qi,t−1 + [γi,tg(xi,t−1)]+,

xi,t = argmin
x∈X

{αi,t〈∂ft−1(xt−1), x〉

+ αi,t〈q̂i,t−1, [γi,tg(x)]+〉+ ‖x− xi,t−1‖2},
li,t−1 = 〈∂ft−1(xt−1), xi,t−1 − xt−1〉,

wi,t =
wi,t−1e

−βli,t−1

∑N
i=1 wi,t−1e−βli,t−1

,

xt =
N∑

i=1

wi,txi,t.

end for
Output: {xt}.

Algorithm 1

Expert-tracking
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Properties of Improved Approach

Theorem 3 (Optimal Regret)
Let N = log2(

√
1 + T ), β = 1/

√
T , αi,t = 2i−1/

√
t, and

γ = γ0/
√
αt, where γ0 ∈ (0, 1/(

√
2G)] is a constant. Then,

Reg({xt}, {yt}) = O(
√
T (1 + PT )), Optimal regret bound∑T

t=1
‖[g(xt)]+‖ = O(

√
T ).
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Online Linear Programming

X ⊆ Rp, ft(x) = 〈θt, x〉 and g(x) = Ax− b
The settings on p, X, θt, A, and b are similar to Yu & Neely (2020)
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Online Quadratic Programming
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Conclusions

Regret and Cumulative Constraint Violation Analysis for Online Convex Optimization with Long Term Constraints

Table 1: Comparison of this paper to related works on online convex optimization with long term constraints.

Reference Loss functions Static regret Regret Constraint
violation

Cumulative
constraint
violation

Mahdavi
et al. (2012) Convex O(

√
T ) Not given O(T 3/4) Not given

Jenatton
et al. (2016)

Convex O(Tmax{c,1−c})
Not given O(T 1−c/2) Not given

Strongly convex O(T c)

Yuan &
Lamperski

(2018)

Convex O(Tmax{c,1−c})
Not given

O(T 1−c/2)

Strongly convex O(log(T )) O(
√

log(T )T )

Yu & Neely
(2020) Convex O(

√
T ) Not given O(T 1/4) Not given

Table 2: Comparison of this paper to related works on online convex optimization with long term constraints.

Reference Loss functions Static regret Regret Constraint
violation

Cumulative
constraint
violation

Mahdavi
et al. (2012) Convex O(

√
T ) Not given O(T 3/4) Not given

Jenatton
et al. (2016)

Convex O(Tmax{c,1−c})
Not given O(T 1−c/2) Not given

Strongly convex O(T c)

Yuan &
Lamperski

(2018)

Convex O(Tmax{c,1−c})
Not given

O(T 1−c/2)

Strongly convex O(log(T )) O(
√

log(T )T )

Yu & Neely
(2020) Convex O(

√
T ) Not given O(T 1/4) Not given

Algorithm 1
Convex O(Tmax{c,1−c}) O(

√
T (1+PT )) O(T (1−c)/2)

Strongly convex O(log(T )) Not given O(log(T ))

Algorithm 2 Convex O(Tmax{c,1−c}) O(
√
T (1 + PT )) O(

√
T )

=
∥∥∥

T∑

t=1

[g(xt)]+

∥∥∥
1
≤ √m

∥∥∥
T∑

t=1

[g(xt)]+

∥∥∥.

Moreover, it is straightforward to see that the cumula-
tive constraint violation (6) is stricter than the cumulative
squared constraint violation (5) when the constraint func-
tions are bounded.

Contributions: This paper first proposes a novel algorithm
(Algorithm 1) for the problem of online convex optimiza-
tion with long term constraints. This algorithm achieves
an O(Tmax{c,1−c}) static regret bound and an O(T (1−c)/2)
cumulative constraint violation bound, where c ∈ (0, 1) is a
user-defined trade-off parameter, and hence yields improved
performance compared with the results in Mahdavi et al.
(2012); Jenatton et al. (2016); Yuan & Lamperski (2018); Yu
& Neely (2020). This algorithm is inspired by Yu & Neely
(2020) and is the first to achieve a cumulative constraint vio-
lation bound strictly better than O(T 3/4) while maintaining

O(
√
T ) regret for convex loss functions. Both static re-

gret and cumulative constraint violation bounds are reduced
to O(log(T )) when the loss functions are strongly convex,
which also improves the results in Jenatton et al. (2016);
Yuan & Lamperski (2018). This algorithm is also the first
to achieve a cumulative constraint violation bound strictly
better than O(

√
log(T )T ) while maintaining O(log(T ))

regret for strongly convex loss functions.

In order to achieve the optimal regret with respect to any
comparator sequence, another algorithm (Algorithm 2) is
then proposed and it achieves the optimal O(

√
T (1 + PT ))

regret and an O(
√
T ) cumulative constraint violation. This

algorithm is inspired by Zhang et al. (2018a). The basic
idea of the second algorithm is to run the first algorithm
multiple times in parallel, each with a different stepsize that
is optimal for a specific path-length, and then to combine
them with an expert-tracking algorithm. This algorithm is
the first to avoid computing the projection PX (·) by consid-

Future work
Reduce regret under strong convexity and/or smoothness condition
Reduce cumulative constraint violation under the Slater condition
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