

Regret and Cumulative Constraint Violation Analysis for Online Convex Optimization with Long Term Constraints

Xinlei Yi KTH Royal Institute of Technology, Sweden xinleiy@kth.se

Joint work with Xiuxian Li, Tao Yang, Lihua Xie, Tianyou Chai, and Karl H. Johansson

Online convex optimization [Zinkevich, ICML, 2003]

1: **for** t = 1 to T **do**

4: end for

Online convex optimization [Zinkevich, ICML, 2003]

- 1: **for** t = 1 to T **do**
- 2: Learner picks a decision $x_t \in \mathcal{X}$ Adversary picks a convex function $f_t: \mathcal{X} \to \mathbb{R}$
- 4: end for

Online convex optimization [Zinkevich, ICML, 2003]

- 1: **for** t = 1 to T **do**
- 2: Learner picks a decision $x_t \in \mathcal{X}$ Adversary picks a convex function $f_t : \mathcal{X} \to \mathbb{R}$
- 3: Learner suffers a loss $f_t(x_t)$ and updates x_t
- 4: end for

Cumulative loss (CL):
$$\sum_{t=1}^{T} f_t(x_t)$$

Online convex optimization [Zinkevich, ICML, 2003]

- 1: for t=1 to T do
- 2: Learner picks a decision $x_t \in \mathcal{X}$ Adversary picks a convex function $f_t : \mathcal{X} \to \mathbb{R}$
- 3: Learner suffers a loss $f_t(x_t)$ and updates x_t
- 4: end for

Cumulative loss (CL):
$$\sum_{t=1}^{T} f_t(x_t)$$

- Learner picks x_t before knowing f_t
- Learner is impossible to minimize CL directly

Online convex optimization [Zinkevich, ICML, 2003]

- 1: for t=1 to T do
- 2: Learner picks a decision $x_t \in \mathcal{X}$ Adversary picks a convex function $f_t : \mathcal{X} \to \mathbb{R}$
- 3: Learner suffers a loss $f_t(x_t)$ and updates x_t
- 4: end for

Cumulative loss (CL):
$$\sum_{t=1}^{T} f_t(x_t)$$

- Learner picks x_t before knowing f_t
- Learner is impossible to minimize CL directly

Learner's objective: choose $\{x_t\}$ s.t. **regret** grows sublinearly

Online convex optimization [Zinkevich, ICML, 2003]

- 1: for t=1 to T do
- 2: Learner picks a decision $x_t \in \mathcal{X}$ Adversary picks a convex function $f_t : \mathcal{X} \to \mathbb{R}$
- 3: Learner suffers a loss $f_t(x_t)$ and updates x_t
- 4: end for

Learner's objective: choose $\{x_t\}$ s.t. **regret** grows sublinearly

$$\operatorname{Reg}(\{x_t\}, \{y_t\}) = \underbrace{\sum_{t=1}^T f_t(x_t)}_{\text{CL of an online learner}} - \underbrace{\sum_{t=1}^T f_t(y_t)}_{\text{CL of a comparator sequence}}$$

Online convex optimization [Zinkevich, ICML, 2003]

- 1: for t=1 to T do
- 2: Learner picks a decision $x_t \in \mathcal{X}$ Adversary picks a convex function $f_t : \mathcal{X} \to \mathbb{R}$
- 3: Learner suffers a loss $f_t(x_t)$ and updates x_t
- 4: end for

Learner's objective: choose $\{x_t\}$ s.t. **regret** grows sublinearly

$$\operatorname{Reg}(\{x_t\}, \{y_t\}) = \underbrace{\sum_{t=1}^T f_t(x_t)}_{\text{CL of an online learner}} - \underbrace{\sum_{t=1}^T f_t(y_t)}_{\text{CL of a comparator sequence}}$$

- Static regret: $\{y_t\} = \{x^*\}$, where $x^* = \arg\min_{x \in \mathcal{X}} \sum_{t=1}^T f_t(x)$
- Dynamic regret: $\{y_t\} = \{x_t^*\}$, where $x_t^* = \arg\min_{x_t \in \mathcal{X}} f_t(x_t)$

Online gradient descent (OGD) [Zinkevich, ICML, 2003]

- 1: for t=1 to T do
- 2: Learner picks a decision $x_t \in \mathcal{X}$ Adversary chooses a convex function $f_t : \mathcal{X} \to \mathbb{R}$
- 3: Learner suffers a loss $f_t(x_t)$
- 4: end for

Online gradient descent (OGD) [Zinkevich, ICML, 2003]

- 1: **for** t = 1 to T **do**
- 2: Learner picks a decision $x_t \in \mathcal{X}$ Adversary chooses a convex function $f_t : \mathcal{X} \to \mathbb{R}$
- 3: Learner suffers a loss $f_t(x_t)$ and updates

$$x_{t+1} = \mathcal{P}_{\mathcal{X}}(x_t - \alpha \nabla f_t(x_t))$$

- 4: end for
- Projection operator: $\mathcal{P}_{\mathcal{X}}(x) = \underset{y \in \mathcal{X}}{\arg \min} \|x y\|$

Online gradient descent (OGD) [Zinkevich, ICML, 2003]

- 1: for t=1 to T do
- 2: Learner picks a decision $x_t \in \mathcal{X}$ Adversary chooses a convex function $f_t : \mathcal{X} \to \mathbb{R}$
- 3: Learner suffers a loss $f_t(x_t)$ and updates

$$x_{t+1} = \mathcal{P}_{\mathcal{X}}(x_t - \alpha \nabla f_t(x_t))$$

- 4: end for
- Projection operator: $\mathcal{P}_{\mathcal{X}}(x) = \underset{y \in \mathcal{X}}{\arg\min} \|x y\|$
- Optimal static regret bound: $\mathcal{O}(\sqrt{T})$

Online gradient descent (OGD) [Zinkevich, ICML, 2003]

- 1: for t=1 to T do
- 2: Learner picks a decision $x_t \in \mathcal{X}$ Adversary chooses a convex function $f_t: \mathcal{X} \to \mathbb{R}$
- 3: Learner suffers a loss $f_t(x_t)$ and updates

$$x_{t+1} = \mathcal{P}_{\mathcal{X}}(x_t - \alpha \nabla f_t(x_t))$$

- 4: end for
- Optimal static regret bound: $\mathcal{O}(\sqrt{T})$

Ader [Zhang et al., NeurIPS, 2018]

- Run OGD multiple times in parallel, each with a different stepsize
- Choose the best one using an expert-tracking algorithm

Online gradient descent (OGD) [Zinkevich, ICML, 2003]

- 1: for t=1 to T do
- 2: Learner picks a decision $x_t \in \mathcal{X}$ Adversary chooses a convex function $f_t: \mathcal{X} \to \mathbb{R}$
- 3: Learner suffers a loss $f_t(x_t)$ and updates

$$x_{t+1} = \mathcal{P}_{\mathcal{X}}(x_t - \alpha \nabla f_t(x_t))$$

- 4: end for
- Optimal static regret bound: $\mathcal{O}(\sqrt{T})$

Ader [Zhang et al., NeurIPS, 2018]

- Run OGD multiple times in parallel, each with a different stepsize
- Choose the best one using an expert-tracking algorithm
- Optimal regret bound: $\mathcal{O}(\sqrt{T(1+P_T)})$
- Path-length of comparator sequence: $P_T = \sum_{t=1}^{T-1} \|y_{t+1} y_t\|$

OCO with Long Term Constraints

Online gradient descent: $x_{t+1} = \mathcal{P}_{\mathcal{X}}(x_t - \alpha \nabla f_t(x_t))$

Projection operator:
$$\mathcal{P}_{\mathcal{X}}(x) = \mathop{\arg\min}_{y \in \mathcal{X}} \|x - y\|$$

Bottleneck is the computational cost of $\mathcal{P}_{\mathcal{X}}(\cdot)$

- ullet $\mathcal X$ is a simple set, e.g., a box or a ball
- $\bullet \ \mathcal{X} = \{x: \ g(x) \le \mathbf{0}_m, \ x \in \mathbb{X}\}\$

OCO with Long Term Constraints

Bottleneck is the computational cost of $\mathcal{P}_{\mathcal{X}}(\cdot)$

- ullet $\mathcal X$ is a simple set, e.g., a box or a ball
- $\mathcal{X} = \{x : g(x) \leq \mathbf{0}_m, x \in \mathbb{X}\}$

$$\mathcal{X} = \{x: \underbrace{g(x) \leq \mathbf{0}_m}_{\text{"Soft" constraint}}, \underbrace{x \in \mathbb{X}}_{\text{"Hard" constraint}}\}$$

- "Soft" constraint could be violated sometimes, but must be satisfied in the long run
- "Hard" constraint must be satisfied in each round

OCO with Long Term Constraints

Bottleneck is the computational cost of $\mathcal{P}_{\mathcal{X}}(\cdot)$

- ullet $\mathcal X$ is a simple set, e.g., a box or a ball
- $\mathcal{X} = \{x : g(x) \leq \mathbf{0}_m, x \in \mathbb{X}\}$

$$\mathcal{X} = \{x: \underbrace{g(x) \leq \mathbf{0}_m}_{\text{"Soft" constraint}}, \underbrace{x \in \mathbb{X}}_{\text{"Hard" constraint}}\}$$

- "Soft" constraint could be violated sometimes, but must be satisfied in the long run
- "Hard" constraint must be satisfied in each round

OCO with long term constraints [Mahdavi et al., JMLR, 2012]

Learner's objective is to choose $\{x_t\}$ s.t. both **regret** and **constraint violation** grow sublinearly

• Constraint violation: $\|[\sum_{t=1}^T g(x_t)]_+\|$, where $[\cdot]_+ = \mathcal{P}_{\mathbb{R}^d_+}(\cdot)$

Stricter Metric: Cumulative Constraint Violation

Constraint violation: $\|[\sum_{t=1}^{T} g(x_t)]_+\|$

 Drawback: constraint violations at some rounds can be compensated by strictly feasible decisions at other rounds

Stricter Metric: Cumulative Constraint Violation

Constraint violation: $\| [\sum_{t=1}^{T} g(x_t)]_+ \|$

 Drawback: constraint violations at some rounds can be compensated by strictly feasible decisions at other rounds

Cumulative constraint violation [Yuan & Lamperski, NeurIPS, 2018]: $\|\sum_{t=1}^T [g(x_t)]_+\|$

State-of-the-Art

Reference	Loss functions	Static regret	Regret	Constraint violation	Cumulative constraint violation
Mahdavi et al. (2012)	Convex	$\mathcal{O}(\sqrt{T})$	Not given	$\mathcal{O}(T^{3/4})$	Not given
Jenatton et al. (2016)	Convex	$\mathcal{O}(T^{\max\{c,1-c\}})$	Not given	$\mathcal{O}(T^{1-c/2})$	Not given
	Strongly convex	$\mathcal{O}(T^c)$			
Yuan & Lamperski (2018)	Convex	$\mathcal{O}(T^{\max\{c,1-c\}})$	Not given	$\mathcal{O}(T^{1-c/2})$	
	Strongly convex	$\mathcal{O}(\log(T))$	Not given	$\mathcal{O}(\sqrt{\log(T)T})$	
Yu & Neely (2020)	Convex	$\mathcal{O}(\sqrt{T})$	Not given	$\mathcal{O}(T^{1/4})$	Not given

Motivation

Reference	Loss functions	Static regret	Regret	Constraint violation	Cumulative constraint violation
Mahdavi et al. (2012)	Convex	$\mathcal{O}(\sqrt{T})$	Not given	$\mathcal{O}(T^{3/4})$	Not given
Jenatton et al. (2016)	Convex	$\mathcal{O}(T^{\max\{c,1-c\}})$	Not given	$\mathcal{O}(T^{1-c/2})$	Not given
	Strongly convex	$\mathcal{O}(T^c)$			
Yuan & Lamperski (2018)	Convex	$\mathcal{O}(T^{\max\{c,1-c\}})$	Not given	$\mathcal{O}(T^{1-c/2})$	
	Strongly convex	$\mathcal{O}(\log(T))$	Not given	$\mathcal{O}(\sqrt{\log(T)T})$	
Yu & Neely (2020)	Convex	$\mathcal{O}(\sqrt{T})$	Not given	$\mathcal{O}(T^{1/4})$	Not given

Motivation

Reference	Loss functions	Static regret	Regret	Constraint violation	Cumulative constraint violation
Mahdavi et al. (2012)	Convex	$\mathcal{O}(\sqrt{T})$	Not given	$\mathcal{O}(T^{3/4})$	Not given
Jenatton et al. (2016)	Convex	$\mathcal{O}(T^{\max\{c,1-c\}})$	Not given	$\mathcal{O}(T^{1-c/2})$	Not given
	Strongly convex	$\mathcal{O}(T^c)$			
Yuan & Lamperski (2018)	Convex	$\mathcal{O}(T^{\max\{c,1-c\}})$	Not given	$\mathcal{O}(T^{1-c/2})$	
	Strongly convex	$\mathcal{O}(\log(T))$	Not given	$\mathcal{O}(\sqrt{\log(T)T})$	
Yu & Neely (2020)	Convex	$\mathcal{O}(\sqrt{T})$	Not given	$\mathcal{O}(T^{1/4})$	Not given

Questions

- (i) Can cumulative constraint violation be reduced?
- (ii) Can optimal regret and sublinear cumulative constraint violation be achieved?

Basic Approach

Algorithm 1 [Yu &Neely, JMLR, 2020]

```
\begin{split} & \textbf{Input: } \alpha > 0 \text{ and } \gamma > 0. \\ & \textbf{Initialize: } q_0 = \mathbf{0}_m \text{ and } x_1 \in \mathbb{X}. \\ & \textbf{for } t = 2, \dots \textbf{do} \\ & \textbf{Observe } \partial f_{t-1}(x_{t-1}). \\ & \textbf{Update} \\ & q_{t-1} = \max\{-\gamma g(x_{t-1}), q_{t-2} + \gamma g(x_{t-1})\}, \\ & \hat{q}_{t-1} = q_{t-1} + \gamma g(x_{t-1}), \\ & x_t = \arg\min_{x \in \mathbb{X}} \{\alpha \langle \partial f_{t-1}(x_{t-1}), x \rangle \\ & + \alpha \langle \hat{q}_{t-1}, \gamma g(x) \rangle + \|x - x_{t-1}\|^2 \}. \end{split}
```

end for

Output: $\{x_t\}$.

- Regret $(\{x_t\}, \{x^*\}) = \mathcal{O}(\sqrt{T})$
- $\|[\sum_{t=1}^{T} g(x_t)]_+\| = \mathcal{O}(T^{1/4})$

Yi et al. | ICML 2021 | Algorithms 6/15

Basic Approach

Algorithm 1 [Yu &Neely, JMLR, 2020]

$$\begin{split} & \textbf{Input: } \alpha > 0 \text{ and } \gamma > 0. \\ & \textbf{Initialize: } q_0 = \mathbf{0}_m \text{ and } x_1 \in \mathbb{X}. \\ & \textbf{for } t = 2, \dots \textbf{do} \\ & \textbf{Observe } \partial f_{t-1}(x_{t-1}). \\ & \textbf{Update} \\ & q_{t-1} = \max\{-\gamma g(x_{t-1}), q_{t-2} + \gamma g(x_{t-1})\}, \\ & \hat{q}_{t-1} = q_{t-1} + \gamma g(x_{t-1}), \\ & x_t = \arg\min_{x \in \mathbb{X}} \{\alpha \langle \partial f_{t-1}(x_{t-1}), x \rangle \\ & + \alpha \langle \hat{q}_{t-1}, \gamma g(x) \rangle + \|x - x_{t-1}\|^2 \}. \end{split}$$

end for

Output: $\{x_t\}$.

• Regret
$$(\{x_t\}, \{x^*\}) = \mathcal{O}(\sqrt{T})$$

•
$$\|[\sum_{t=1}^{T} g(x_t)]_+\| = \mathcal{O}(T^{1/4})$$

Algorithm 1

$$\begin{split} & \text{Input: } \{\alpha_t > 0\} \text{ and } \{\gamma_t > 0\}. \\ & \text{Initialize: } q_0 = \mathbf{0}_m \text{ and } x_1 \in \mathbb{X}. \\ & \text{for } t = 2, \dots \text{do} \\ & \text{Observe } \partial f_{t-1}(x_{t-1}). \\ & \text{Update} \\ & q_{t-1} = q_{t-2} + [\gamma_t g(x_{t-1})]_+, \\ & \hat{q}_{t-1} = q_{t-1} + [\gamma_t g(x_{t-1})]_+, \\ & x_t = \underset{x \in \mathbb{X}}{\arg \min} \{\alpha_t \langle \partial f_{t-1}(x_{t-1}), x \rangle \\ & + \alpha_t \langle \hat{q}_{t-1}, \gamma_t [g(x)]_+ \rangle + \|x - x_{t-1}\|^2 \}. \end{split}$$

end for

Output: $\{x_t\}$.

Yi et al. | ICML 2021 | Algorithms 6/15

Properties of Basic Approach: Convex

Theorem 1

Let $\alpha_t=\alpha_0/t^c$ and $\gamma=\gamma_0/\sqrt{\alpha_t}$, where $\alpha_0>0$, $c\in(0,1)$, and $\gamma_0\in(0,1/(\sqrt{2}G)]$ are constants. Then,

$$\operatorname{Reg}(\{x_t\}, \{y_t\}) = \mathcal{O}(\alpha_0 T^{1-c} + T^c (1 + P_T)/\alpha_0),$$
$$\sum_{t=1}^T \|[g(x_t)]_+\| = \mathcal{O}(\sqrt{\alpha_0} T^{(1-c)/2}).$$

Yi et al. | ICML 2021 | Algorithms 7/15

Properties of Basic Approach: Convex

Theorem 1

Let $\alpha_t=\alpha_0/t^c$ and $\gamma=\gamma_0/\sqrt{\alpha_t}$, where $\alpha_0>0$, $c\in(0,1)$, and $\gamma_0\in(0,1/(\sqrt{2}G)]$ are constants. Then,

$$\operatorname{Reg}(\{x_t\}, \{y_t\}) = \mathcal{O}(\alpha_0 T^{1-c} + T^c (1 + P_T)/\alpha_0),$$
$$\sum_{t=1}^T \|[g(x_t)]_+\| = \mathcal{O}(\sqrt{\alpha_0} T^{(1-c)/2}).$$

(i) Choosing $\alpha_0 = 1$ yields

$$\operatorname{Reg}(\{x_t\}, \{x^*\}) = \mathcal{O}(T^{\max\{c, 1 - c\}}),$$

$$\sum_{t=1}^{T} \|[g(x_t)]_+\| = \mathcal{O}(T^{(1 - c)/2}) < \mathcal{O}(T^{1 - c/2}).$$

State-of-the-art result [Yuan & Lamperski, NeurIPS, 2018]

Reg(
$$\{x_t\}, \{x^*\}$$
) = $\mathcal{O}(T^{\max\{c, 1-c\}})$,
 $\sum_{t=1}^{T} ||[g(x_t)]_+|| = \mathcal{O}(T^{1-c/2})$.

Properties of Basic Approach: Convex

Theorem 1

Let $\alpha_t=\alpha_0/t^c$ and $\gamma=\gamma_0/\sqrt{\alpha_t}$, where $\alpha_0>0$, $c\in(0,1)$, and $\gamma_0\in(0,1/(\sqrt{2}G)]$ are constants. Then,

$$\operatorname{Reg}(\{x_t\}, \{y_t\}) = \mathcal{O}(\alpha_0 T^{1-c} + T^c (1 + P_T)/\alpha_0),$$
$$\sum_{t=1}^T \|[g(x_t)]_+\| = \mathcal{O}(\sqrt{\alpha_0} T^{(1-c)/2}).$$

(i) Choosing $\alpha_0 = 1$ and c = 0.5 yields

$$\operatorname{Reg}(\{x_t\}, \{x^*\}) = \mathcal{O}(\sqrt{T}),$$
 Optimal static regret bound
$$\sum_{t=1}^T \|[g(x_t)]_+\| = \mathcal{O}(T^{1/4}).$$
 Cumulative constraint violation

State-of-the-art result [Yu & Neely, JMLR, 2020]

$$\begin{split} &\operatorname{Reg}(\{x_t\}, \{x^*\}) = \mathcal{O}(\sqrt{T}), \\ &\|[\sum_{t=1}^T g(x_t)]_+\| = \mathcal{O}(T^{1/4}). \end{split}$$
 Constraint violation

Yi et al. | ICML 2021 | Algorithms 7/15

Theorem 1

Let $\alpha_t=\alpha_0/t^c$ and $\gamma=\gamma_0/\sqrt{\alpha_t}$, where $\alpha_0>0$, $c\in(0,1)$, and $\gamma_0\in(0,1/(\sqrt{2}G)]$ are constants. Then,

$$\operatorname{Reg}(\{x_t\}, \{y_t\}) = \mathcal{O}(\alpha_0 T^{1-c} + T^c (1 + P_T)/\alpha_0),$$
$$\sum_{t=1}^T \|[g(x_t)]_+\| = \mathcal{O}(\sqrt{\alpha_0} T^{(1-c)/2}).$$

(ii) If P_T is known, choosing $\alpha_0 = \sqrt{1+P_T}$ and c=0.5 yields $\operatorname{Reg}(\{x_t\},\{y_t\}) = \mathcal{O}(\sqrt{T(1+P_T)}), \quad \text{Optimal regret bound}$ $\sum\nolimits_{t=1}^T \|[g(x_t)]_+\| = \mathcal{O}(T^{1/4}(1+P_T)^{1/4}) \leq \mathcal{O}(\sqrt{T}).$

Yi et al. | ICML 2021 | Algorithms 7/15

Properties of Basic Approach: Strongly Convex

Recall: Theorem 1

Let $\alpha_t=\alpha_0/\sqrt{t}$ and $\gamma=\gamma_0/\sqrt{\alpha_t}$, where $\alpha_0>0$ and $\gamma_0\in(0,1/(\sqrt{2}G)]$ are constants. Then,

$$\operatorname{Reg}(\{x_t\}, \{x^*\}) = \mathcal{O}(\sqrt{T}), \ \sum_{t=1}^{T} ||[g(x_t)]_+|| = \mathcal{O}(T^{1/4}).$$

Theorem 2

Suppose each $f_t(\cdot)$ is strongly convex. Let $\alpha_t=1/(\mu t)$ and $\gamma=\gamma_0/\sqrt{\alpha_t}$, where $\gamma_0\in(0,1/(\sqrt{2}G)]$ are constants. Then,

$$\operatorname{Reg}(\{x_t\}, \{x^*\}) = \mathcal{O}(\log(T)), \ \sum_{t=1}^{T} \|[g(x_t)]_+\| = \mathcal{O}(\log(T)).$$

State-of-the-art result [Yuan & Lamperski, NeurIPS, 2018]

Each $f_t(\cdot)$ is strongly convex:

$$\operatorname{Reg}(\{x_t\}, \{x^*\}) = \mathcal{O}(\log(T)), \ \sum_{t=1}^{T} \|[g(x_t)]_+\| = \mathcal{O}(\sqrt{T \log(T)}).$$

Yi et al. | ICML 2021 | Algorithms 8/15

Improved Approach: Motivation

Recall: Theorem 1

If P_T is known in advance, choosing $\alpha_t = \sqrt{(1+P_T)/t}$ yields

$$\operatorname{Reg}(\{x_t\}, \{y_t\}) = \mathcal{O}(\sqrt{T(1+P_T)}),$$
$$\sum_{t=1}^{T} \|[g(x_t)]_+\| = \mathcal{O}(T^{1/4}(1+P_T)^{1/4}).$$

$$\sum_{t=1}^{T} ||[g(x_t)]_+|| = \mathcal{O}(T^{1/4}(1+P_T)^{1/4}).$$

Yi et al. Algorithms 9/15 **ICML 2021**

Improved Approach: Motivation

Recall: Theorem 1

If P_T is known in advance, choosing $\alpha_t = \sqrt{(1+P_T)/t}$ yields

Reg(
$$\{x_t\}, \{y_t\}$$
) = $\mathcal{O}(\sqrt{T(1+P_T)})$,
 $\sum_{t=1}^{T} ||[g(x_t)]_+|| = \mathcal{O}(T^{1/4}(1+P_T)^{1/4})$.

• Question: $P_T = \sum_{t=1}^{T-1} \|y_{t+1} - y_t\|$ is normally unknown

Yi et al. | ICML 2021 | Algorithms 9/15

Recall: Theorem 1

If P_T is known in advance, choosing $\alpha_t = \sqrt{(1+P_T)/t}$ yields

Reg(
$$\{x_t\}, \{y_t\}$$
) = $\mathcal{O}(\sqrt{T(1+P_T)})$,
 $\sum_{t=1}^{T} ||[g(x_t)]_+|| = \mathcal{O}(T^{1/4}(1+P_T)^{1/4})$.

• Question: $P_T = \sum_{t=1}^{T-1} \|y_{t+1} - y_t\|$ is normally unknown

Solution

- Design $N=\log_2(\sqrt{T})$ different stepsizes $\alpha_{i,t}=2^{i-1}/\sqrt{t}$: $\exists i_0 \leq N$, s.t. $\alpha_{i_0,t}$ is close to the optimal stepsize $\sqrt{(1+P_T)/t}$
- ullet Run Algorithm 1 N times in parallel, each with stepsize $lpha_{i,t}$
- Choose the optimal one using an expert-tracking algorithm

Yi et al. | ICML 2021 | Algorithms 9/15

Improved Approach

Algorithm 2

Input:
$$N \in \mathbb{N}_{+}$$
, $\beta > 0$, $\{\alpha_{i,t} > 0\}$ and $\{\gamma_{i,t} > 0\}$.
Initialize: $q_{i,0} = \mathbf{0}_{m}$, $x_{i,1} \in \mathbb{X}$, $w_{i,1} = \frac{N+1}{i(i+1)N}$, $\forall i \in [N]$, and $x_{1} = \sum_{i=1}^{N} w_{i,1}x_{i,1}$.
for $t = 2, \dots$ do

Observe $\partial f_{t-1}(x_{t-1})$.

Update
$$q_{i,t-1} = q_{i,t-2} + [\gamma_{i,t}g(x_{i,t-1})]_{+},$$

$$\hat{q}_{i,t-1} = q_{i,t-1} + [\gamma_{i,t}g(x_{i,t-1})]_{+},$$
 $x_{i,t} = \arg\min_{x \in \mathbb{X}} \{\alpha_{i,t} \langle \partial f_{t-1}(x_{t-1}), x \rangle$

$$\begin{aligned} &+\alpha_{i,t} \langle \hat{q}_{i,t-1}, [\gamma_{i,t} g(x)]_{+} \rangle + \|x - x_{i,t-1}\|^{2} \}, \\ & l_{i,t-1} = \langle \partial f_{t-1}(x_{t-1}), x_{i,t-1} - x_{t-1} \rangle, \\ & w_{i,t} = \frac{w_{i,t-1} e^{-\beta l_{i,t-1}}}{\sum_{i=1}^{N} w_{i,t-1} e^{-\beta l_{i,t-1}}}, \quad \text{Expert-tracking} \\ & x_{t} = \sum_{i=1}^{N} w_{i,t} x_{i,t}. \end{aligned}$$

end for

Output: $\{x_t\}$.

Theorem 3 (Optimal Regret)

Let
$$N=\log_2(\sqrt{1+T})$$
, $\beta=1/\sqrt{T}$, $\alpha_{i,t}=2^{i-1}/\sqrt{t}$, and $\gamma=\gamma_0/\sqrt{\alpha_t}$, where $\gamma_0\in(0,1/(\sqrt{2}G)]$ is a constant. Then,
$$\operatorname{Reg}(\{x_t\},\{y_t\})=\mathcal{O}(\sqrt{T(1+P_T)}), \quad \text{Optimal regret bound}$$

$$\sum_{t=1}^T\|[g(x_t)]_+\|=\mathcal{O}(\sqrt{T}).$$

Yi et al. | ICML 2021 | Algorithms 11/15

Online Linear Programming

- $\mathbb{X} \subseteq \mathbb{R}^p$, $f_t(x) = \langle \theta_t, x \rangle$ and g(x) = Ax b
- The settings on p, \mathbb{X} , θ_t , A, and b are similar to Yu & Neely (2020)

Yi et al. | ICML 2021 | Simulations 12/15

Online Quadratic Programming

•
$$\mathbb{X} \subseteq \mathbb{R}^p$$
, $f_t(x) = \|x - \theta_t\|^2 + 20\langle \theta_t, x \rangle$ and $g(x) = Ax - b$

Yi et al. | ICML 2021 | Simulations 13/15

Conclusions

Reference	Loss functions	Static regret	Regret	Constraint violation	Cumulative constraint violation
Mahdavi et al. (2012)	Convex	$\mathcal{O}(\sqrt{T})$	Not given	$\mathcal{O}(T^{3/4})$	Not given
Jenatton et al. (2016)	Convex	$\mathcal{O}(T^{\max\{c,1-c\}})$	Not given	$\mathcal{O}(T^{1-c/2})$	Not given
	Strongly convex	$\mathcal{O}(T^c)$			
Yuan & Lamperski (2018)	Convex	$\mathcal{O}(T^{\max\{c,1-c\}})$	Not given	$\mathcal{O}(T^{1-c/2})$	
	Strongly convex	$\mathcal{O}(\log(T))$	Not given	$\mathcal{O}(\sqrt{\log(T)T})$	
Yu & Neely (2020)	Convex	$\mathcal{O}(\sqrt{T})$	Not given	$\mathcal{O}(T^{1/4})$	Not given
Algorithm 1	Convex	$\mathcal{O}(T^{\max\{c,1-c\}})$	$\mathcal{O}(\sqrt{T}(1+P_T))$	$\mathcal{O}(T^{(1-c)/2})$	
	Strongly convex	$\mathcal{O}(\log(T))$	Not given	$\mathcal{O}(\log(T))$	
Algorithm 2	Convex	$\mathcal{O}(T^{\max\{c,1-c\}})$	$\mathcal{O}(\sqrt{T(1+P_T)})$	$\mathcal{O}(\sqrt{T})$	

Future work

- Reduce regret under strong convexity and/or smoothness condition
- Reduce cumulative constraint violation under the Slater condition

Yi et al. | ICML 2021 | Conclusions 14/15

References

Thanks for your time!

Jenatton, Rodolphe, Jim Huang, and Cédric Archambeau (2016). "Adaptive algorithms for online convex optimization with long-term constraints". In: International Conference on Machine Learning, pp. 402–411.

Mahdavi, Mehrdad, Rong Jin, and Tianbao Yang (2012). "Trading regret for efficiency: Online convex optimization with long term constraints". In: Journal of Machine Learning Research 13.81, pp. 2503–2528.

Yu, Hao and Michael J. Neely (2020). "A Low Complexity Algorithm with $O(\sqrt{T})$ Regret and O(1) Constraint Violations for Online Convex Optimization with Long Term Constraints". In: Journal of Machine Learning Research 21.1, pp. 1–24.

Yuan, Jianjun and Andrew Lamperski (2018). "Online convex optimization for cumulative constraints". In: Advances in Neural Information Processing Systems, pp. 6140–6149.

Zhang, Lijun, Shiyin Lu, and Zhi-Hua Zhou (2018). "Adaptive online learning in dynamic environments". In: Advances in Neural Information Processing Systems, pp. 1323–1333.

Zinkevich, Martin (2003). "Online convex programming and generalized infinitesimal gradient ascent". In: International Conference on Machine Learning, pp. 928–936.

Yi et al. | ICML 2021 | References 15/15