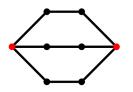
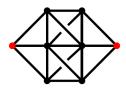
# Link Prediction with Persistent Homology: An Interactive View

Zuoyu Yan, Tengfei Ma, Liangcai Gao, Zhi Tang, Chao Chen

Peking University, IBM T. J. Watson Research Center, Stony Brook University

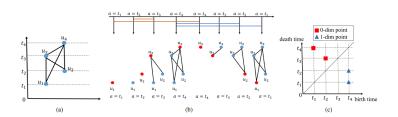

ICML | 2021


Thirty-eighth International Conference on Machine Learning



1/7

#### Introduction

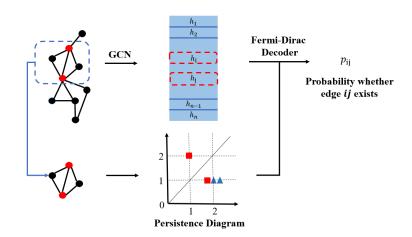





- Task: link prediction
- Motivation: graph connectivity information has been used (i.e., node degree, distance to target nodes), but not enough
- We propose to use advanced topological information: Persistent Homology (PH)
  - count the number of loops
  - measure the range of distance for each loop

◆ロト ◆問 ト ◆ 重 ト ◆ 重 ・ か Q (~)

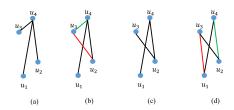
## Persistent homology




- PH: capture topological structures (connected components, loops) and encode their significance in view of the filter function
- Filter function: an observation of the elements of the graph
- Contribution:
  - Involve pairwise PH to enhance GNN for link prediction
  - Accelerate the computation of PH



(TLC-GNN) Presentation June, 2021 3/7


### TLC-GNN



- Enclosing subgraph: intersection of k-hop neighborhoods of target nodes
- Minimize the cross-entropy loss using negative sampling

(TLC-GNN) Presentation June, 2021 4/7

## A Faster Algorithm



- Maintain a rooted tree while going through the descending filtration
- Every time a new edge is added, find the corresponding persistence pair by inspecting the newly formed loop
- Update the tree and continue with the next edge
- The proposed faster algorithm achieves 1.5 to 2.5 times speedup

Table 2. Computational time (seconds per edge) evaluation.

|        | PUBMED | Рното  | Computers |
|--------|--------|--------|-----------|
| ALG. 1 | 0.0068 | 1.6557 | 4.6531    |
| ALG. 2 | 0.0027 | 1.1176 | 2.7033    |



## Experiments

Table 1. Mean and standard deviation of ROC-AUC on real-world data. "\*": results copied from (Chami et al., 2019; Zhu et al., 2020).

| МЕТНОО                     | PUBMED                      | Рното       | COMPUTERS   |
|----------------------------|-----------------------------|-------------|-------------|
| GCN (KIPF & WELLING, 2016) | 89.56±3.660*                | 91.82±0.000 | 87.75±0.000 |
| HGCN (CHAMI ET AL., 2019)  | 96.30±0.000*                | 95.40±0.000 | 93.61±0.000 |
| GIL (ZHU ET AL., 2020)     | 95.49±0.160*                | 97.11±0.007 | 95.89±0.010 |
| SEAL (ZHANG & CHEN, 2018)  | 92.42±0.119                 | 97.83±0.013 | 96.75±0.015 |
| PEGN (ZHAO ET AL., 2020)   | 95.82±0.001                 | 96.89±0.001 | 95.99±0.001 |
| TLC-GNN (NODEWISE)         | 96.91±0.002                 | 97.91±0.001 | 97.03±0.001 |
| TLC-GNN (DRNL)             | 96.89±0.002                 | 97.61±0.003 | 97.23±0.003 |
| TLC-GNN (RICCI)            | <b>97.03</b> ± <b>0.001</b> | 98.23±0.001 | 97.90±0.001 |

Table 3. Experimental results(s) on PPI datasets

| SAMPLES | 1     | 2      | 3        | 4     | 5     |
|---------|-------|--------|----------|-------|-------|
| GCN     | 75.21 | 74.42  | 77.68    | 76.22 | 69,67 |
| GIL     | 57.69 | 1.45   | 34.90    | 85.61 | 33.65 |
| HGCN    |       | CANNOT | CONVERGE |       |       |
| SEAL    | 50.00 | 64.79  | 67.14    | 72.55 | 50.00 |
| TLC-GNN | 83.92 | 81.21  | 83.95    | 83.03 | 83.53 |

• AUC-ROC: Achieves SOTA on nearly all the benchmarks

◆□▶ ◆□▶ ◆臺▶ ◆臺▶ · 臺 · 釣९○·

Thanks for listening!

Paper / code link: https://arxiv.org/abs/2102.10255

7/7

(TLC-GNN) Presentation June, 2021