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1Université Toulouse Capitole, 2 INRIA Paris



Problem setup

Consider the problem

min
x∈Rd

f(x), (P)

where f : Rd → R is a convex function.

Standard method: Stochastic Gradient Descent

xt+1 = xt − ηtgt,

where

E [gt] = ∇f(xt)

is an unbiased gradient estimate. An equivalent form is

xt+1 = arg min
x∈Rd

{
g>t x+

1

2ηt
‖x− xt‖2

}
(SGD)
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Bregman stochastic gradient descent

We can try to find a better model of f by regularizing with a more general Bregman

divergence:

xt+1 = arg min
x∈Rd

{
g>t x+

1

ηt
Dh(x, xt)

}
(B-SGD)

where

Dh(x, y) = h(x)− h(y)−∇h(y)>(x− y) ≥ 0,

is the Bregman divergence induced by function h.

When is this a good idea ? When f is smooth relative to h [Bauschke et al., 2017]:

f(x) ≤ f(xt) +∇f(xt)>(x− xt) + LDh(x, xt).

Note: also known as stochastic Mirror Descent.
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Convergence analysis of B-SGD

xt+1 = argmin
x∈C

{
f(xt) + g>t (x− xt) +

1

η
Dh(x, xt)

}
(B-SGD)

Convergence rate, relatively strongly convex case

• gt = ∇fξ(xt) and fξ is L-smooth relative to h for every ξ,

• f is µ-strongly convex relative to h,

• there exists a constant σ2 > 0 (variance) such that for some zt,

Eξt
[
‖∇fξt(x

?)‖2∇2h(zt)−1

]
≤ σ2. (1)

Then if η ≤ 1/(2L), the iterates of B-SGD satisfy

E [Dh(x
?, xt)] ≤ (1− ηL)tDh(x?, x0) + η

σ2

µ
. (2)

• Generalizes the Euclidean result for SGD

• Interpolation setting: if σ2 = 0, i.e., ∇fξ(x∗) = 0 for all ξ, linear convergence

rate of Bregman gradient descent (Lu et al, 2018) is recovered.
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Bregman Variance Reduction

Similarly to B-SGD, a Bregman-SAGA algorithm can be obtained by replacing gt by a

SAGA-style variance-reduced gradient in the finite sum case.

(Informal) For well-chosen step-sizes, Bregman-SAGA converges linearly with rate

n+ κGt, where Gt → 1 as t→ +∞ and κ = L/µ.

The “good” convergence rate is reached asymptotically: same result as for accelerated

Bregman gradient descent (Hendrikx et al., 2020).
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Numerical experiments
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(a) Distributed logistic regression problem
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(b) Tomographic reconstruction problem
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Stochasticity can be leveraged to speed up Bregman methods.
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