

Bilevel Optimization: Convergence Analysis and Enhanced Design

Kaiyi Ji, Junjie Yang, Yingbin Liang

Electrical Computer Engineering

Ohio State University

06/20/2021

Bilevel Optimization in ML

Few-shot meta-learning

> Outer level: update embedding model for all tasks

Bilevel Optimization in ML

Hyperparameter Optimization:

Problem Formulation

Objective function

$$\min_{x\in\mathbb{R}^p}\Phi(x):=f(x,y^*(x))$$
 s.t.
$$y^*(x)=\arg\min_{y\in\mathbb{R}^q}g(x,y),$$

- ightharpoonup f(x,y): outer-level loss; g(x,y): inner-level loss
- \rightarrow $y^*(x)$: minimizer of inner-level loss $g(x,\cdot)$
- Applications:
 - Meta-learning:
 - \square x: embedding model parameters
 - \Box y: task-specific weights

- Hyperparameter optimization:
 - \Box x: hyperparameters
 - \Box y: model weights

Hypergradient & Existing Methods

- Hypergradient: $\nabla \Phi(x) = \frac{\partial f(x, y^*(x))}{\partial x}$
- Two major classes
 - > Approximate implicit differentiation (AID):

$$\nabla \Phi(x) = \nabla_x f(x, y^*(x)) - \nabla_x \nabla_y g(x, y^*(x)) [\nabla_y^2 g(x, y^*(x))]^{-1} \nabla_y f(x, y^*(x)).$$

- ☐ Approximate Hessian-inverse-vector via solving linear system
- ➤ Iterative differentiation (ITD):
 - \square Compute $y^N(x)$ via N steps of iterative algorithms

$$\frac{\partial f(x, y^{N}(x))}{\partial x} \to \nabla \Phi(x) = \frac{\partial f(x, y^{*}(x))}{\partial x}$$

Open Questions

- Limited **non-asymptotic** analysis
 - ➤ Whether they converge in finite steps for most applications
 - ➤ No quantitative comparison among these algorithms
 - > No guidelines for parameter selection
- AID-based methods:
 - Existing analysis: **increasing number** of inner-level steps

Practice: constant number | Theory: worse rate

- ITD-based methods:
 - > No convergence rate analysis yet

Open Questions

• Loss functions often take a finite-sum form

$$f(x,y) = \frac{1}{n} \sum_{i=1}^{n} F(x,y;\xi_i)$$

$$g(x,y) = \frac{1}{m} \sum_{i=1}^{m} G(x,y;\zeta_i)$$

 $\succ \xi_i, \zeta_i$: data samples

How to design a principled algorithm in sampling setting?

Can **stochastic data sampling** improve efficiency?

Our Results:

Theory

Algorithm	$\mathrm{Gc}(f,\epsilon)$	$\mathrm{Gc}(g,\epsilon)$	$JV(g,\epsilon)$	$\mathrm{HV}(g,\epsilon)$
AID-BiO (Ghadimi & Wang, 2018)	$\mathcal{O}(\kappa^4\epsilon^{-1})$	$\mathcal{O}(\kappa^5\epsilon^{-5/4})$	$\mathcal{O}\left(\kappa^4\epsilon^{-1} ight)$	$\widetilde{\mathcal{O}}\left(\kappa^{4.5}\epsilon^{-1} ight)$
AID-BiO (this paper)	$\mathcal{O}(\kappa^3 \epsilon^{-1})$	$\mathcal{O}(\kappa^4\epsilon^{-1})$	$\mathcal{O}\left(\kappa^3\epsilon^{-1}\right)$	$\mathcal{O}\left(\kappa^{3.5}\epsilon^{-1} ight)$
ITD-BiO (this paper)	$\mathcal{O}(\kappa^3\epsilon^{-1})$	$\widetilde{\mathcal{O}}(\kappa^4\epsilon^{-1})$	$\widetilde{\mathcal{O}}\left(\kappa^4\epsilon^{-1} ight)$	$\widetilde{\mathcal{O}}\left(\kappa^4\epsilon^{-1} ight)$

 $Gc(f, \epsilon)$ and $Gc(g, \epsilon)$: number of gradient evaluations w.r.t. f and g.

 $JV(g, \epsilon)$: number of Jacobian-vector products.

 $HV(g, \epsilon)$: number of Hessian-vector products.

➤ Improved complexity over AID-BiO

Constant inner-level steps

Inner-level warm start

First result on ITD-BiO

Experiments on Meta-Learning

(a) dataset: miniImageNet

(b) dataset: FC100

- Our AID-BiO-constant performs best
- Our repo: https://github.com/JunjieYang97/stocBiO
 - ☐ More efficient **first-order** ITD-BiO is developed!

Check!

Fast Stochastic Bilevel Optimizer

• Stochastic bilevel optimizer: StocBiO

Fast Stochastic Bilevel Optimizer

Lower complexity

Algorithm	$\mathrm{Gc}(F,\epsilon)$	$\mathrm{Gc}(G,\epsilon)$	$JV(G,\epsilon)$	$\mathrm{HV}(G,\epsilon)$
TTSA (Hong et al., 2020)	$\mathcal{O}(ext{poly}(\kappa)\epsilon^{-rac{5}{2}})^*$	$\mathcal{O}(ext{poly}(\kappa)\epsilon^{-rac{5}{2}})$	$\mathcal{O}(ext{poly}(\kappa)\epsilon^{-rac{5}{2}})$	$\mathcal{O}(ext{poly}(\kappa)\epsilon^{-rac{5}{2}})$
BSA (Ghadimi & Wang, 2018)	$\mathcal{O}(\kappa^6\epsilon^{-2})$	$\mathcal{O}(\kappa^9\epsilon^{-3})$	$\mathcal{O}\left(\kappa^6\epsilon^{-2} ight)$	$\widetilde{\mathcal{O}}\left(\kappa^6\epsilon^{-2} ight)$
stocBiO (this paper)	$\mathcal{O}(\kappa^5\epsilon^{-2})$	$\mathcal{O}(\kappa^9\epsilon^{-2})$	$\mathcal{O}\left(\kappa^{5}\epsilon^{-2} ight)$	$\widetilde{\mathcal{O}}\left(\kappa^6\epsilon^{-2} ight)$

 ϵ : target accuracy; κ : condition number

Fast convergence and strong efficiency:

stocBiO

Logistic regression on 20 Newsgroup

Data hyper-cleaning on MNIST

Summary

- New non-asymptotic analysis
 - > Tighter analysis on AID-based bilevel optimizers
 - First-known analysis on ITD-based bilevel optimizers
- Faster stochastic bilevel algorithm
 - > Lower sample complexity
 - Better efficiency, scalability and test performance
- Future works
 - > Application to reinforcement learning
 - > Hessian and Jacobian free methods

Thanks!