Scalable Marginal Likelihood Estimation for Model Selection in Deep learning

ICML 2021

Alexander Immer ETH Zurich Matthias Bauer Deepmind Vincent Fortuin ETH Zurich

Gunnar Rätsch ETH Zurich Emtiyaz Khan RIKEN AIP

Model Selection in Deep Learning

(1) hyperparameters (regularization) and (2) model architecture (ResNet vs CNN).

But validation data might be unavailable (e.g. in continual learning).

We show the training marginal likelihood is viable for model selection in DL!

(1) Differentiable hyperparameters during training

(2) Architecture Selection after training

Laplace approximation [1] to the log marginal likelihood $\mathbf{H}_{ heta} =
abla_{ heta heta}^2 \log p(\mathcal{D}, heta|\mathcal{M})$

Marginal Likelihood Estimation for Deep Learning

$$\log p(\mathcal{D}|\mathcal{M}) \approx \underbrace{\log p(\mathcal{D}|\theta_*, \mathcal{M})}_{\text{Training data fit}} + \underbrace{\log p(\theta_*|\mathcal{M}) - \frac{1}{2}\log\left|\frac{1}{2\pi}\mathbf{H}_{\theta_*}\right|}_{\text{Complexity penalty}}$$

Complexity penalty

Scalable approximations to the Hessian

Gauss-Newton Fisher Information **Empirical Fisher**

Correlation captured

Full KFAC (block-diagonal) [3, 4] Diagonal

[1] MacKay. "A practical Bayesian framework for backpropagation networks." Neural computation (1992).

Maximizing the Marginal Likelihood during Training

Every epoch:

Update network parameters (e.g. Adam) Differentiate MargLik wrt. hyperparameters Update differentiable hyperparameters

Maximizing the Marginal Likelihood during Training

- On par or better than cross-validation
 - UCI regression/classification, image classification
- Several hundred hyperparameters at once
 - No overhead for some approximations

Marginal Likelihood for Architecture Comparison

Two architectures (CNN, ResNet) + varying width (\leq 64) and depth (\leq 110)

Marginal Likelihood for Architecture Comparison

ResNets of varying width (\leq 64) and depth (\leq 110)

 \rightarrow In line with proposed Wide ResNet architecture [5]

Summary

- Marginal likelihood viable for model selection in DL without validation data
- Optimize margLik: hundreds of hyperparameters during training
- Model comparison across architectures seems possible

References (abbreviated)

[1] MacKay: "A practical Bayesian framework for backpropagation networks"

[2] Rasmussen, et al.: "Occam's razor"

[3] Martens, et al.: "Optimizing neural networks with KFAC"

[4] Ritter, et al.: "A Scalable Laplace Approximation for Neural Networks"

[5] Zagoruyko, et al.: "Wide Residual Networks"