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Model Selection in Deep Learning

(1) hyperparameters (regularization) and (2) model architecture (ResNet vs CNN).

But validation data might be unavailable (e.g. in continual learning).
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We show the training marginal likelihood is viable for model selection in DL!

(2) Architecture Selection after training(1) Differentiable hyperparameters during training



Marginal Likelihood Estimation for Deep Learning

Laplace approximation [1] to the log marginal likelihood
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Training data fit Complexity penalty

1

2 Scalable approximations to the Hessian

Approx. types

Gauss-Newton
Fisher Information
Empirical Fisher

Correlation captured

Full
KFAC (block-diagonal) [3, 4]
Diagonal

[1] MacKay. "A practical Bayesian framework for backpropagation networks." Neural computation (1992).



Maximizing the Marginal Likelihood during Training
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Every epoch:
Update network parameters (e.g. Adam)
Differentiate MargLik wrt. hyperparameters 
Update differentiable hyperparameters

Traces
O 
O 
O

Optimize Hyperparameters during Training
(e.g. regularization)

Compare Architectures
(e.g. #layers)



Maximizing the Marginal Likelihood during Training
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Every epoch:
Update network parameters (e.g. Adam)
Differentiate MargLik wrt. hyperparameters 
Update differentiable hyperparameters

● On par or better than cross-validation
○ UCI regression/classification, image classification

● Several hundred hyperparameters at once
○ No overhead for some approximations

Traces
O 
O 
O

Optimize Hyperparameters during Training
(e.g. regularization)

Compare Architectures
(e.g. #layers)



Marginal Likelihood for Architecture Comparison
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Two architectures (CNN, ResNet) + varying width (≤ 64) and depth (≤ 110)

ResNet 64w 44d
10 mio parameters

CNN 8w 2d
16k parameters



Marginal Likelihood for Architecture Comparison
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ResNets of varying width (≤ 64) and depth (≤ 110)

→ In line with proposed Wide ResNet architecture [5]
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Summary
● Marginal likelihood viable for model selection in DL without validation data

● Optimize margLik: hundreds of hyperparameters during training

● Model comparison across architectures seems possible


