Neuro-algorithmic Policies Enable Fast Combinatorial Generalization

Marin Vlastelica, Michal Rolínek and Georg Martius

Max Planck Institute for Intelligent Systems

Generalizing in Control is Hard

Our Contribution

- We formulate the discrete control problem as a time-dependent shortest path problem (TDSP).
- We apply **blackbox differentiation theory** [1] to embed TDSP solvers into neural network architectures.
- We show that these **neuro-algorithmic policies** surpass standard methods for imitation learning as well as RL baselines in terms of generalization capability.

Assumptions on MDP

- State space factorizes
- We apply **blackbox differentiation theory** [1] to embed TDSP solvers into neural network architectures.
- We show that these **neuro-algorithmic policies** surpass standard methods for imitation learning as well as RL baselines in terms of generalization capability.

Neuro-algorithmic Policy Architecture

How do We Train Them?

Algorithm 1 Forward and backward Pass for the shortestpath algorithm

function FORWARDPASS(C, s, e) Y := TDSP(C, s, e) // Run Dijkstra's algorithm save Y, C, s, e // Needed for backward pass return Y

function BACKWARDPASS($\nabla L(Y), \lambda$) load Y, C, s, e $C_{\lambda} := C + \lambda \nabla L(Y)$ // Calculate modified costs $Y_{\lambda} := \mathbf{TDSP}(C_{\lambda}, s, e)$ // Run Dijkstra's algo. return $\frac{1}{\lambda}(Y_{\lambda} - Y)$

Combinatorially Challenging Environments

We evaluate on environments that are combinatorially challenging.

We want to generalize to unseen levels with few examples.

Results

Path Length

Thank You