
ActNN: Reducing Training Memory Footprint
via 2-Bit Activation Compressed Training

Jianfei Chen*, Lianmin Zheng*, Zhewei Yao, Dequan Wang

Ion Stoica, Michael Mahoney, and Joseph Gonzalez

UC Berkeley

Presenter: Jianfei Chen

ICML 2021

AI and Memory Wall

Figure credit: Gholami A, Yao Z, Kim S, Mahoney MW, Keutzer K. AI and Memory Wall. RiseLab Medium Blog Post, University of California Berkeley, 2021, March 29.

activation

ActNN: Activation Compressed Training of Neural Networks

• In many applications, memory is mainly consumed by the activations

• We reduce the training memory footprint by compressing the activations

Q
Stochastic quantizer
float32 -> int2

Q-1 Dequantizer
int2 -> float32

Backward

Backward

Backward

loss

Forward

Forward

Forward

input

Q

Q

Q

compressed
activation

Q-1

Q-1

Q-1

Unbiased Gradient

Forward

Forward

Forward

Backward

Backward

Backward

loss

activation

input

Forward

Forward

Forward

Backward

Backward

Backward

loss

input

Q-1Q

compressed
activation

Q-1Q

Q-1Q

Approximate GradientExact Gradient

activation

average over stochastic quantization noise

Convergence

• Stochastic Gradient Descent with unbiased gradient

assuming…

learning rate

smoothness

Gradient
variance

Gradient Variance

Forward

Forward

Forward

Backward

Backward

Backward

loss

input

Q-1Q

compressed
activation

Q-1Q

Q-1Q

Noise Source

P
a

ra
m

eter

analytical
expression

(Per-group) quantization

Good quantizer → fewer bits to achieve convergence → better compression ratio

Quantization range R

B bins

Zero point Z

1 w.p. 70%

0 w.p. 30%
0.7→

group range

tensor range

per-tensor quantization per-group quantization

separate quantization range
per each group

Fine-Grained Mixed Precision

• Each sample / layer has different sensitivity to quantization noise

• The sensitivity can be (approximately) computed analytically

• Minimize the variance within a given total bits budget

• Allocate the bits dynamically during training

Dense layer:

layer sample sensitivity bins

System Implementation

• actnn: a collection of activation compressed layers in PyTorch

√ Support arbitrary computational graph

√ Dynamic execution

√ No ahead-of-training overhead

√ Standalone package

√ Combine with other memory-saving techniques

Supported Layers
• Conv / ConvTranspose / Linear
• BatchNorm, SyncBatchNorm
• ReLU, MaxPool

1-line conversion
from original PyTorch layers to ActNN layers

class Net(nn.Module):
def __init__(self):

super(Net, self).__init__()
self.conv1 = nn.Conv2d(3, 16, 3, stride=2)
self.relu = nn.ReLU()
self.bn1 = nn.BatchNorm2d(16)

self.conv2 = nn.Conv2d(16, 32, 3, stride=2)
self.bn2 = nn.BatchNorm2d(32)

self.fc = nn.Linear(32, 10)

model = Net()

class Net(nn.Module):
def __init__(self):

super(Net, self).__init__()
self.conv1 = actnn.QConv2d(3, 16, 3, stride=2)
self.relu = actnn.QReLU()
self.bn1 = actnn.QBatchNorm2d(16)

self.conv2 = actnn.QConv2d(16, 32, 3, stride=2)
self.bn2 = actnn.QBatchNorm2d(32)

self.fc = actnn.QLinear(32, 10)

import actnn
model = actnn.QModule(model)

PyTorch layers Memory-efficient
ActNN layers

12x activation
memory
compression

Empirical Convergence

ResNet50 on ImageNet

N/A: not available
Div.: diverge
“-”: skipped since lower

precision achieves
lossless results

pergroup

pergroup + persample MP

pergroup + persample/layer MP

BLPA: Chakrabarti, Ayan, and Benjamin
Moseley. “Backprop with approximate
activations for memory-efficient network
training.” NeurIPS’19

Near-lossless results (<0.5%) on all our benchmarks
• Segmentation: HRNet, Dilation8, FPN

• Detection: RetinaNet

• Self-supervised learning: MoCov2, BYOL

Activation Memory Reduction

• 2-bit quantization reduces activation memory by 12x

Large Batch Size Training

Maximum batch size for ResNet-152

with a Nvidia T4 (16GB)

DTR: Kirisame, Marisa, et al. "Dynamic tensor rematerialization.“ ICLR’21
BLPA: Chakrabarti, Ayan, and Benjamin Moseley. “Backprop with approximate activations for memory-efficient network training.” NeurIPS’19

optimization levels

√ ActNN can be combined with
other memory-efficient training
techniques (e.g. swapping)

√ and other quantized training
techniques (e.g., AMP)

Larger Model

Comparison of the largest models ActNN can train before out-of-
memory with the same batch size(64) with a Nvidia Tesla T4 (16GB)

Depth

Width

Resolution

• ActNN enables training larger models without additional resources

• Example: scaling up ResNet-152

Summary

• Reducing Memory Footprint by Quantizing the activation to 2-bits

• Convergence Guarantee with SGD

• Adaptive Quantization Techniques

• A Plug-and-Play PyTorch library

Supported Layers
• Conv / ConvTranspose / Linear
• BatchNorm, SyncBatchNorm
• ReLU, MaxPool

Tested Models
• Classification: ResNet / DenseNet
• Segmentation: HRNet / Dilation8 / FPN
• Detection: FPN
• Self-supervised learning: MoCov2, BYOL

github.com/ucbrise/actnn

Thanks!

github.com/ucbrise/actnn

