ActNN: Reducing Training Memory Footprint via 2-Bit Activation Compressed Training

Jianfei Chen^{*}, Lianmin Zheng^{*}, Zhewei Yao, Dequan Wang Ion Stoica, Michael Mahoney, and Joseph Gonzalez UC Berkeley

Presenter: Jianfei Chen

ICML 2021

Al and Memory Wall

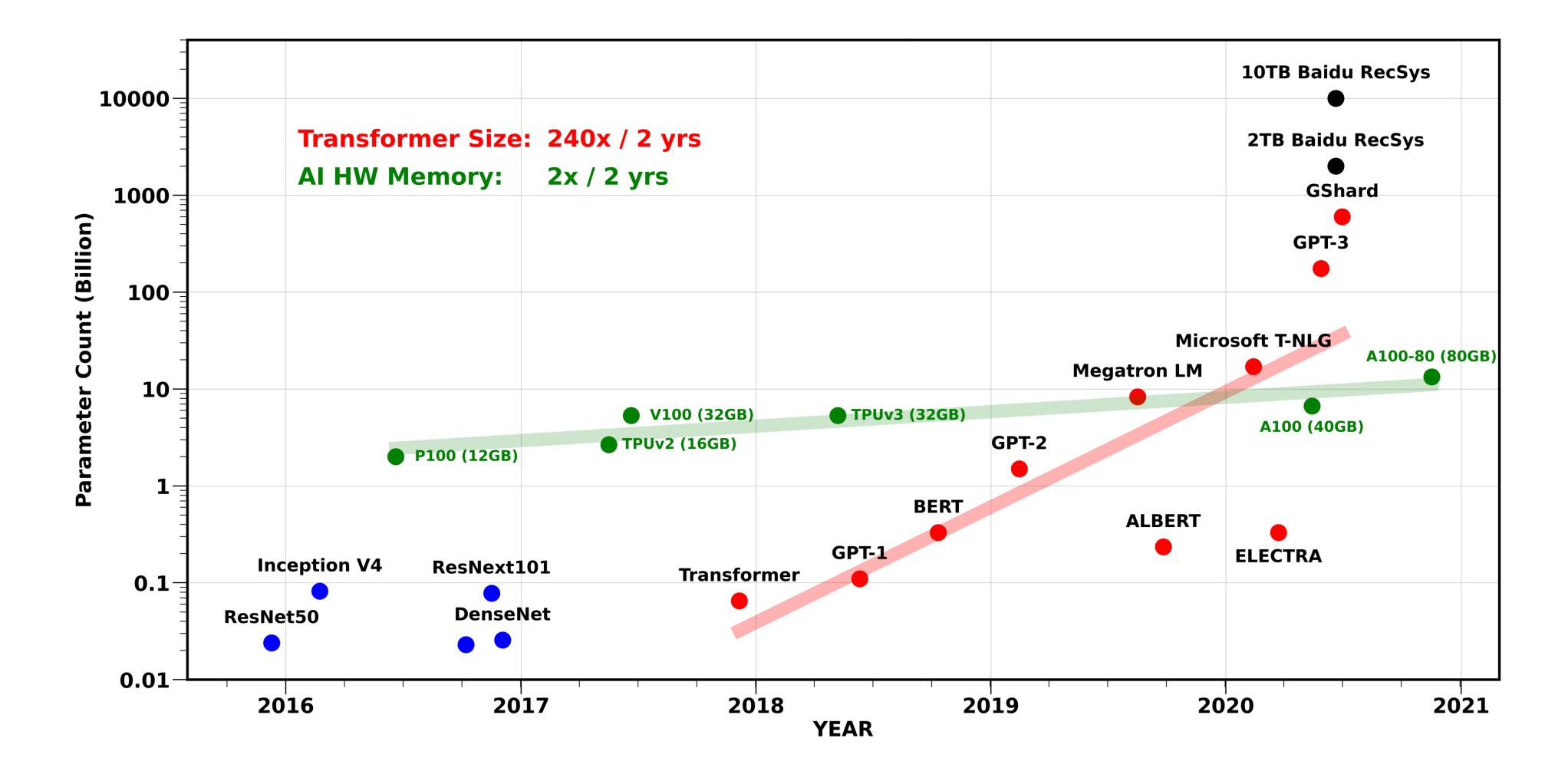
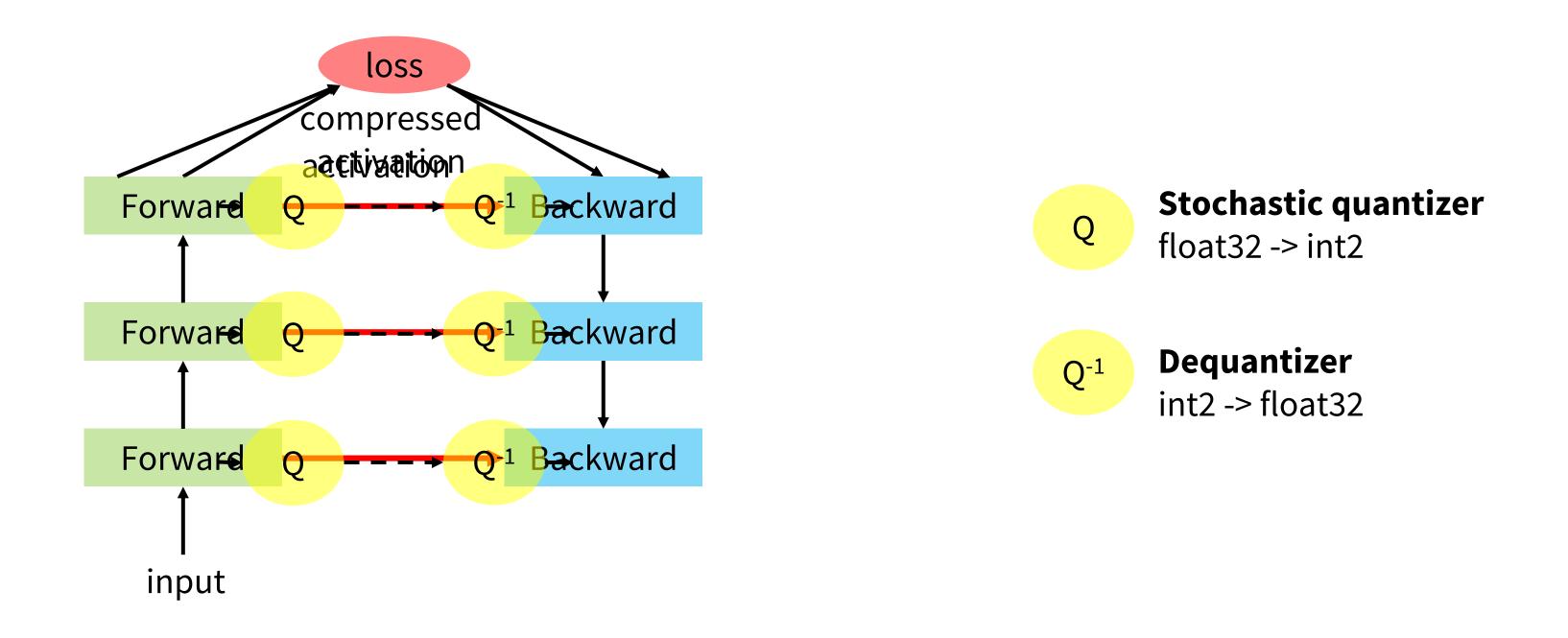


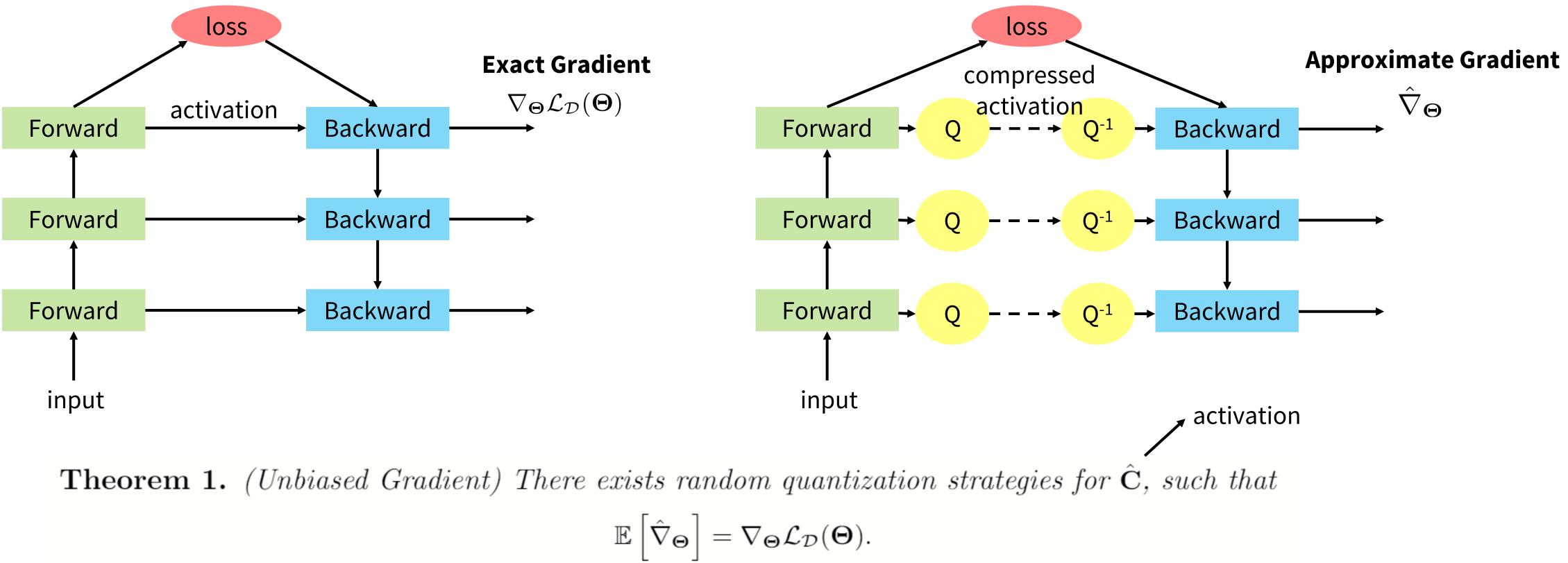
Figure credit: Gholami A, Yao Z, Kim S, Mahoney MW, Keutzer K. AI and Memory Wall. RiseLab Medium Blog Post, University of California Berkeley, 2021, March 29.

ActNN: Activation Compressed Training of Neural Networks

- In many applications, memory is mainly consumed by the **activations**
- We reduce the training memory footprint by compressing the activations



Unbiased Gradient



average over stochastic quantization noise

Convergence

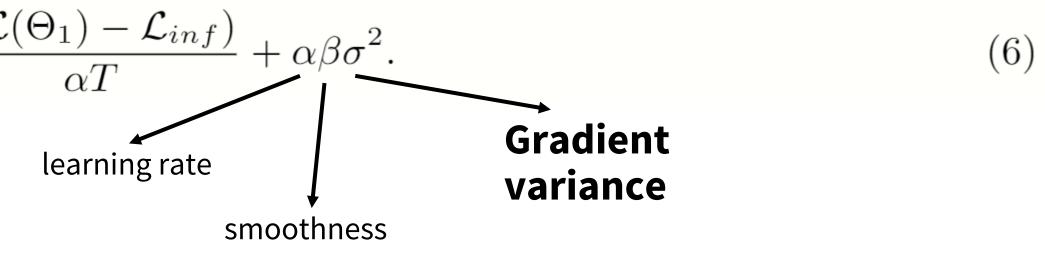
 Stochastic Gradient Descent with unbiased gradient $\Theta_{t+1} \leftarrow \Theta_t - c$

assuming...

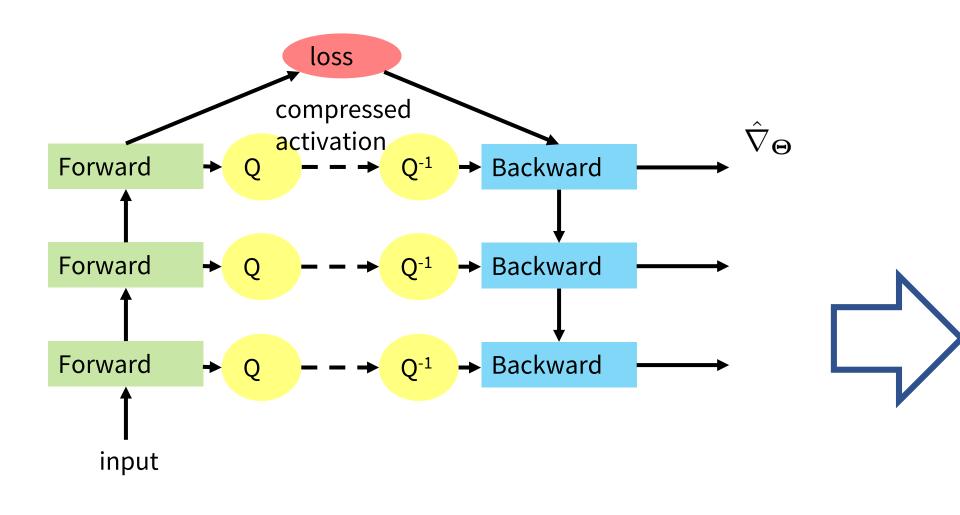
A1. The loss $\mathcal{L}_{\mathcal{D}}(\Theta)$ is continuous differentiable and $\nabla \mathcal{L}_{\mathcal{D}}(\Theta)$ is β -Lipschitz continuous. A2. $\mathcal{L}_{\mathcal{D}}(\Theta)$ is bounded below by \mathcal{L}_{inf} . **A3.** There exists $\sigma^2 > 0$, such that $\forall \Theta$, $\operatorname{Var} \left[\hat{\nabla}_{\Theta} \right] \leq \sigma^2$, where for any vector \mathbf{x} , $\operatorname{Var} [\mathbf{x}] := \mathbb{E} \|\mathbf{x}\|^2 - \|\mathbb{E} [\mathbf{x}]\|^2$.

Theorem 2. (Convergence) If A1-A3 holds, and $0 < \alpha \leq \frac{1}{\beta}$, take the number of iterations t uniformly from $\{1, \ldots, T\}$, where T is a maximum number of iterations. Then $\mathbb{E} \|\nabla \mathcal{L}_{\mathcal{D}}(\boldsymbol{\Theta}_{t})\|^{2} \leq \frac{2(\mathcal{L}(\boldsymbol{\Theta}_{1}) - \mathcal{L}_{inf})}{\alpha T} + \alpha \beta \sigma^{2}.$ (6)

$$\hat{u}\hat{\nabla}_{\mathbf{\Theta}_{t}}$$

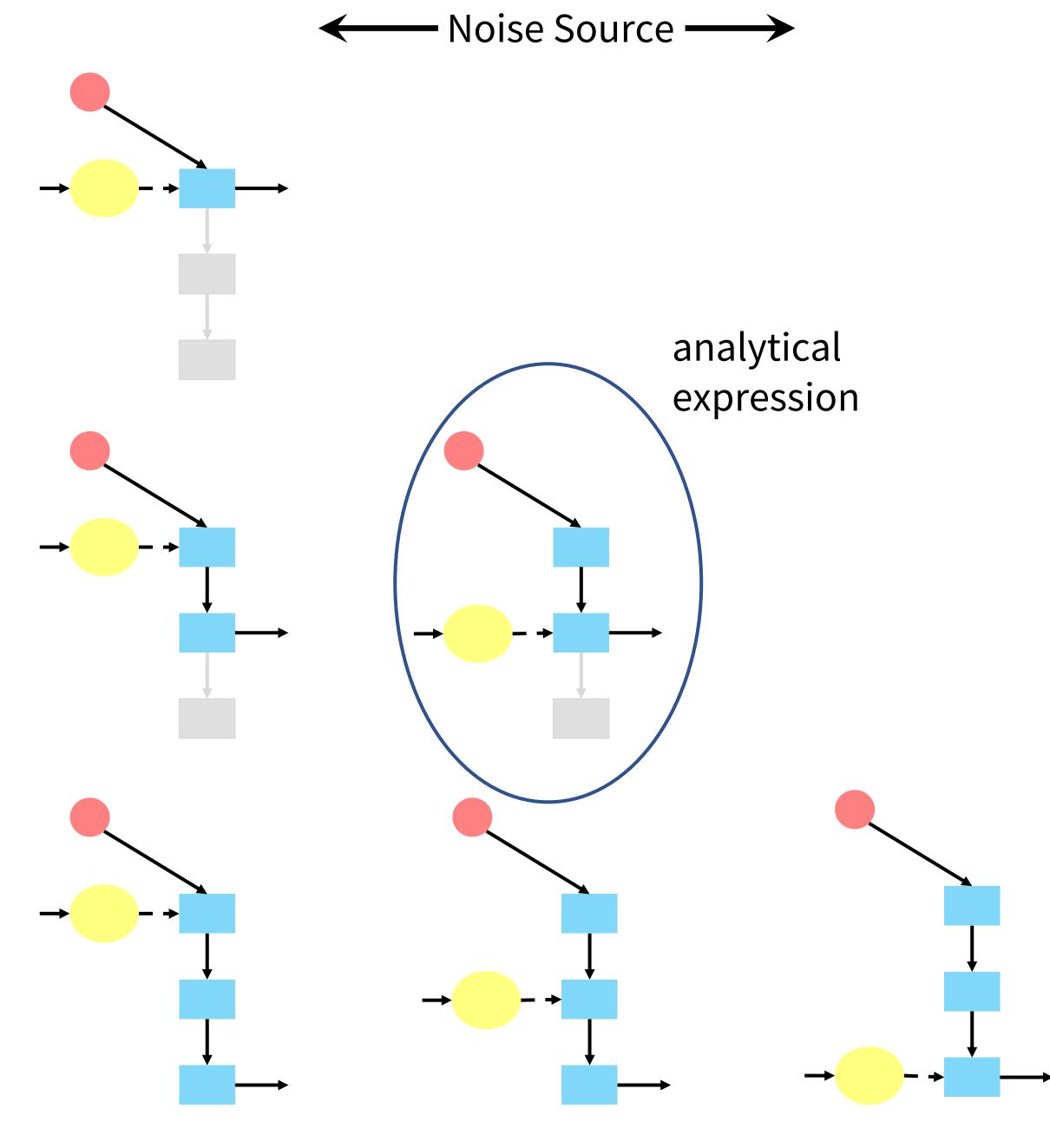


Gradient Variance



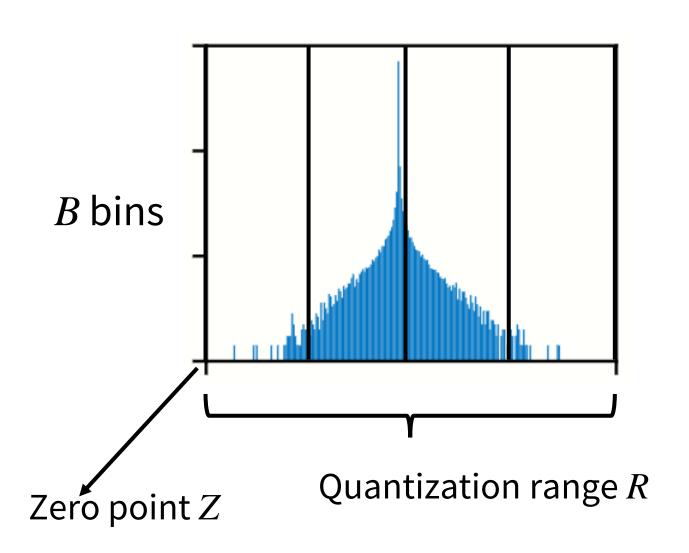
Theorem 3. (Gradient Variance)

$$\operatorname{Var}\left[\hat{\nabla}_{\boldsymbol{\Theta}^{(l)}}\right] = \operatorname{Var}\left[\nabla_{\boldsymbol{\Theta}^{(l)}}\right] + \sum_{m=l}^{L} \mathbb{E}\left[\operatorname{Var}\left[\mathbf{G}_{\boldsymbol{\Theta}}^{(l\sim m)}\left(\hat{\nabla}_{\mathbf{H}^{(m)}}, \hat{\mathbf{C}}^{(m)}\right) \mid \hat{\nabla}_{\mathbf{H}^{(m)}}\right]\right].$$



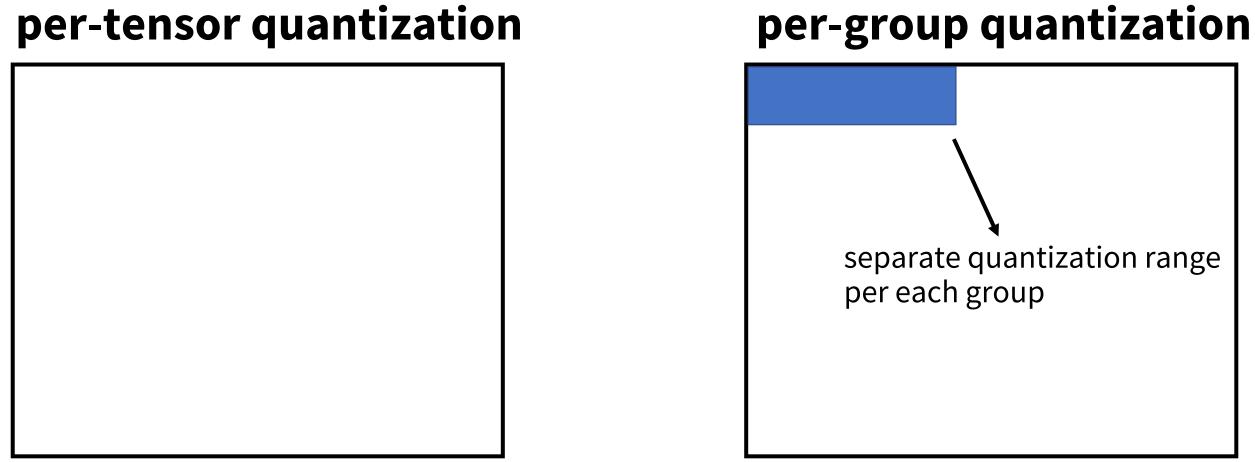
(Per-group) quantization

Good quantizer \rightarrow fewer bits to achieve convergence \rightarrow better compression ratio

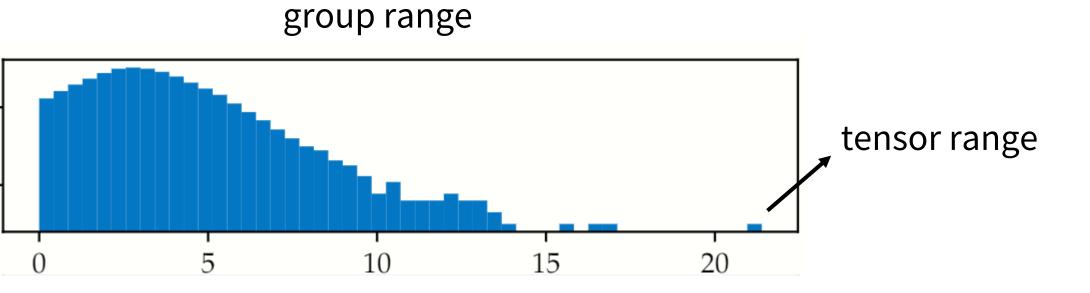


. 10³

 10^1

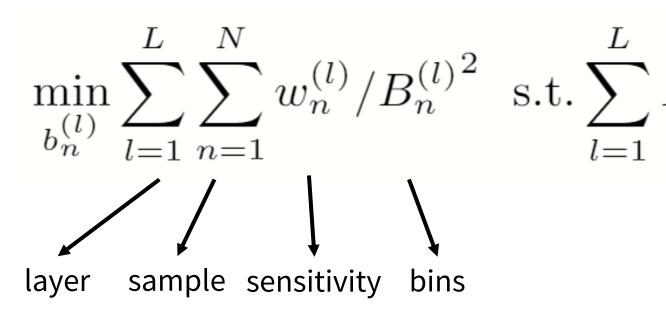


 $Q(x) = \operatorname{StoRound}(B(x - Z)/R)$ 1 w.p. 70% 0.7→ 0 w.p. 30%



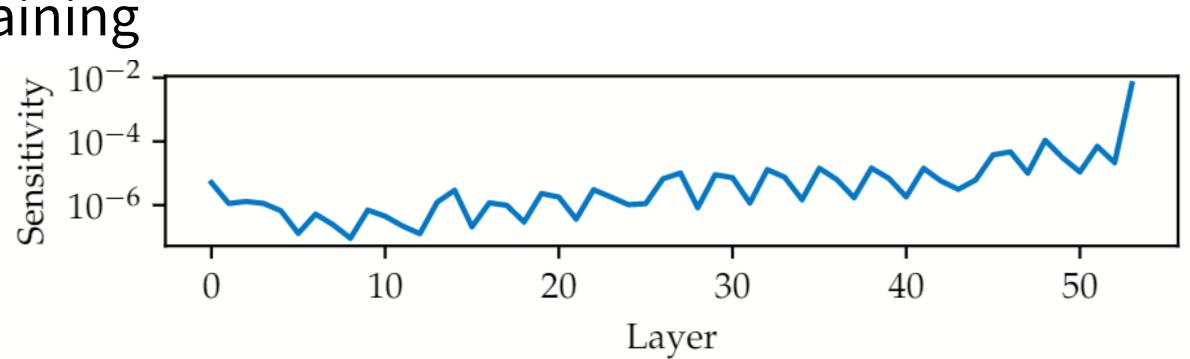
Fine-Grained Mixed Precision

- Each sample / layer has different sensitivity to quantization noise • The sensitivity can be (approximately) computed **analytically**
- Minimize the variance within a given total bits budget



• Allocate the bits dynamically during training

 $w_n^{(l)} = \frac{G}{6} \|\hat{\nabla}_{\mathbf{h}_n^{(l)}}\|^2 \|\mathbf{R}_n^{(l)}\|^2$ Dense layer:



$$D^{(l)} \sum_{n=1}^{N} b_n^{(l)} \le b_{total}$$

System Implementation

actnn: a collection of activation compressed layers in PyTorch

```
class RegularLayer:
  def forward(context, input):
    context.save_for_backward(input)
    return compute_output(input)
  def backward(context, grad_output):
    input = context.saved_tensors
    return compute_gradient(grad_output, input)
class ActivationCompressedLayer:
  def forward(context, input):
    context.save_for_backward(compress(input))
    return compute_output(input)
  def backward(context, grad_output):
    input = decompress(context.saved_tensors))
    return compute_gradient(grad_output, input)
```

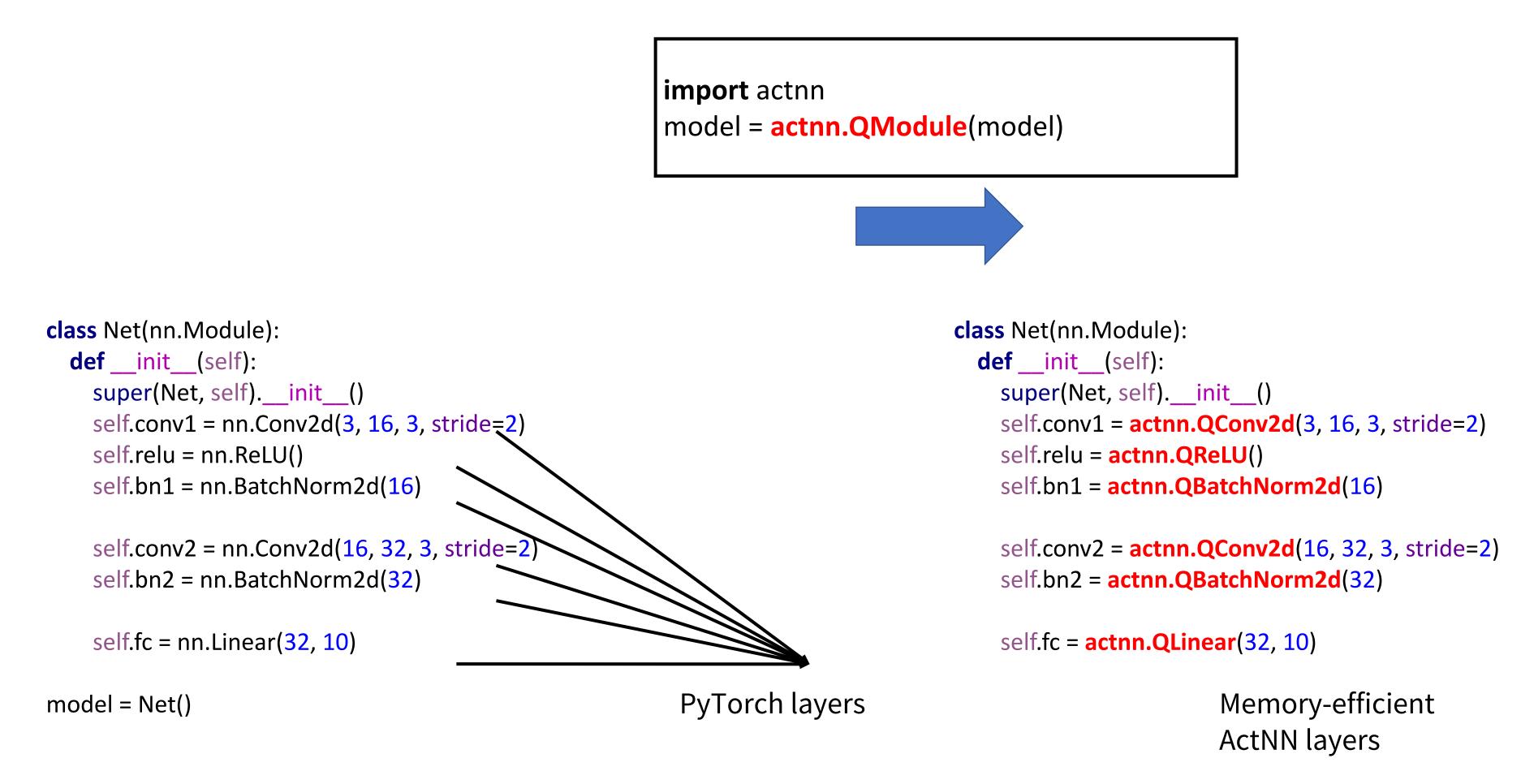
- ✓ Support arbitrary computational graph
- $\sqrt{}$ Dynamic execution
- √ No ahead-of-training overhead
- √ Standalone package
- V Combine with other memory-saving techniques

Supported Layers

- Conv / ConvTranspose / Linear
- BatchNorm, SyncBatchNorm ullet
- ReLU, MaxPool

1-line conversion

from original PyTorch layers to ActNN layers



12x activation memory compression

Empirical Convergence

ResNet50 on ImageNet

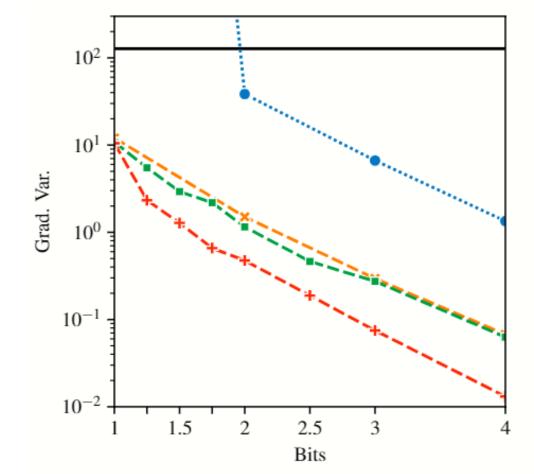
BLPA: Chakrabarti, Ayan, and Benjamin	Bits	32	4	3	2	1.5	1.25
Moseley. "Backprop with approximate activations for memory-efficient network training." <i>NeurIPS'19</i>	FP BLPA	77.1 N/A	N/A 76.6	N/A Div.	N/A Div.	m N/A $ m N/A$	N/A N/A
pergroup	ActNN (L2)	N/A	-	77.4	0.1	N/A	N/A
pergroup + persample MP	ActNN $(L2.5)$	N/A	-	-	77.1	75.9	75.1
pergroup + persample/layer MP	ActNN $(L3)$	N/A	-	-	76.9	76.4	75.9

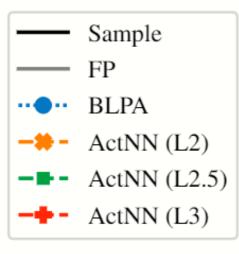
Near-lossless results (<0.5%) on all our benchmarks • Segmentation: HRNet, Dilation8, FPN

- Detection:

- RetinaNet
- Self-supervised learning: MoCov2, BYOL

- N/A: not available
- **Div.:** diverge
- "-": skipped since lower precision achieves lossless results





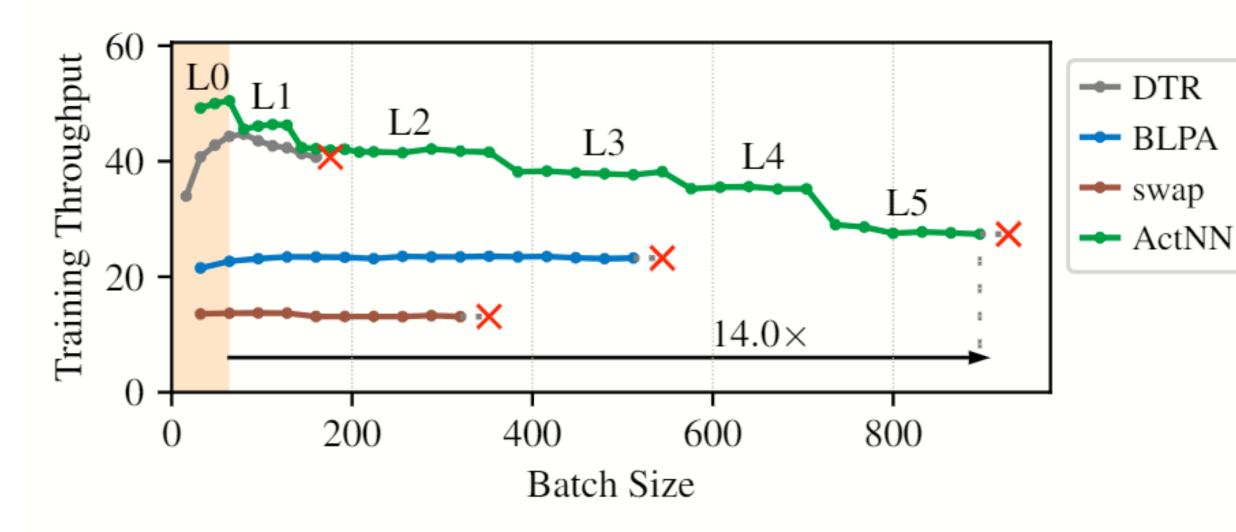
Activation Memory Reduction

• 2-bit quantization reduces activation memory by 12x

Network	Batch	Total Mem. (GB)			Act. Mem. (GB)			
		FP	ActNN $(L3)$	R	FP	ActNN $(L3)$	R	
ResNet-152	32	6.01	1.18	$5 \times$	5.28	0.44	$12 \times$	
	64	11.32	1.64	$7 \times$	10.57	0.88	$12 \times$	
	96	OOM	2.11	/	OOM	1.32	/	
	512	OOM	8.27	/	OOM	7.01	/	
FCN-HR-48	2	5.76	1.39	$4 \times$	4.76	0.39	$12 \times$	
	4	10.52	1.79	$6 \times$	9.52	0.79	$12 \times$	
	6	OOM	2.17	/	OOM	1.18	/	
	20	OOM	4.91	/	OOM	3.91	/	

Large Batch Size Training

Maximum batch size for ResNet-152 with a Nvidia T4 (16GB)



DTR: Kirisame, Marisa, et al. "Dynamic tensor rematerialization." ICLR'21 BLPA: Chakrabarti, Ayan, and Benjamin Moseley. "Backprop with approximate activations for memory-efficient network training." NeurIPS'19

optimization levels

Level	Compression Strategy	Bits
LO	Do not compress	32
L1	per-group quantization for conv. layers	4, 32
L2	per-group quantization	4
L3	L2 + fine-grained mixed-precision	2
L4	L3 + swapping	2
L5	L4 + defragmentation	2

 \sqrt{ActNN} can be **combined** with other memory-efficient training techniques (e.g. swapping)

 \sqrt{and} other quantized training techniques (e.g., AMP)

Larger Model

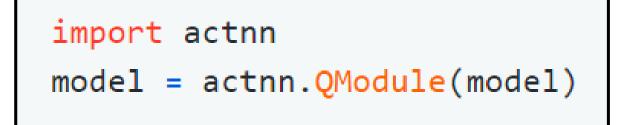
- ActNN enables training larger models without additional resources
- Example: scaling up ResNet-152

Comparison of the largest models ActNN can train before out-ofmemory with the same batch size(64) with a Nvidia Tesla T4 (16GB)

	Dim.	FP	Maximum Value FP ActNN (L3) ActNN (L4)			Training Throughput (TFLOPS)FPActNN (L3)ActNN (L4)				
Depth Width	D W	160 92	$\begin{array}{c} 660 \\ 332 \end{array}$	$ 1016 \\ 340 $	$\begin{array}{c c} 0.59 \\ 0.70 \end{array}$	$0.46 \\ 1.07$	$0.38 \\ 1.09$			
Resolution	R	240	636	740	0.59	0.46	0.42			

Summary

- Reducing Memory Footprint by Quantizing the activation to 2-bits
- Convergence Guarantee with SGD
- Adaptive Quantization Techniques
- A Plug-and-Play PyTorch library



Supported Layers

- Conv / ConvTranspose / Linear
- BatchNorm, SyncBatchNorm •
- ReLU, MaxPool lacksquare

Tested Models Classification: ResNet / DenseNet • Segmentation: HRNet / Dilation8 / FPN • Detection: FPN • Self-supervised learning: MoCov2, BYOL

github.com/ucbrise/actnn

Thanks!

github.com/ucbrise/actnn