Non-Autoregressive Electron Redistribution Modeling for Reaction Prediction

Hangrui Bi*, Hengyi Wang*, Chence Shi, Connor Coley, Jian Tang, Hongyu Guo

Motivation

- Predicting the products of chemical reactions presents a fundamental challenge in computational chemistry.
- Existing machine learning approaches typically produce a reaction product by sequentially forming its subparts or intermediate molecules.
- Such autoregressive methods not only require an arbitrary order for the incremental construction but also preclude the use of parallel decoding for efficient computation.
- To address these issues, we devise a transformer-like network to generate low-degree molecule graphs non-autoregressively

Methods

- Chemical bonds are typically pairs of shared electrons. Bonds formed/broken can be expressed as reaction electron flows.
- We employ a multi-pointer network, whose multiple attention heads indicate the direction of electron flows

Results

	Accuracies(%)					
Model Name(scheme)	Top-1	Top-2	Top-3	Top-5	parallel	end-to-end
WLDN [†] (combinatorial)	79.6	-	87.7	89.2	\checkmark	×
GTPN [†] (graph)	83.2	-	86.0	86.5	×	~
Transformer-base † (sequence)	88.8	92.6	93.7	94.4	×	\checkmark
MEGAN [†] (graph)	89.3	92.7	94.4	95.6	×	\checkmark
Transformer-augmented [†] (sequence)	90.4	93.7	94.6	95.3	×	~
Symbolic [†] (combinatorial)	90.4	93.2	94.1	95.0	\checkmark	×
NERF	90.7±0.03	92.3 ± 0.22	93.3 ± 0.15	93.7±0.17	\checkmark	\checkmark

Model Name	Wall-time	Latency	Speedup
Transformer (b=5)	9min	448ms	$1 \times$
MEGAN (b=10)	31.5min	144ms	0.29 ×
Symbolic	>7h	1130ms	$0.02 \times$
NERF	20s	17ms	$27 \times$

† indicates that the results were copied from its published paper.