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Sketching

A compressed mapping of few or all data points
(X) in a data set to generate data summary
called Sketch (S) to preserve or approximate
the covariance matrix, i.e.,

S's = X'x




Sketch-based ML Framework
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Least-Mean-Squares (LMS)

LINEAR REGRESSION, f(z) = 2%, and g(w) = 0.
(XTX)w = X'y
RIDGE REGRESSION, f(z) = 2%, and g(w) = )||w]||2, where, A > 0,

(XTX + \)w = XTy

Our focus is on theoretically accurate summary
of input data which could be directly plugged to
accelerate scikit-learn LMS solvers
AlM
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Inspiration

(Maalouf et al.)' proposed LMS-BOOST

Coreset-Sketch fusion algorithm
Faster implementation of Caratheodory Theorem (1907)
Accurately solve and accelerate LMS solvers in scikit-learn library
upto 100x

— summarizes input data X into matrix & of size O(d?) x d

— preserves the input covariance, i.e. S8 = XTX
— computational time complexity of O(nd? + log(n) x df)

Claim 1: QR decomposition is relatively time-consuming.

Claim 2: QR decomposition is unsuitable for exact factorization for streaming data.

'Maalouf, A., Jubran, 1., and Feldman, D. “Fast and accurate least-mean-squares solvers”. in AI‘M
Advances in Neural Information Processing Systems, pp. 8305-8316, 2019 .




Contributions

Test and Check validity of the above claims made against the
QR decomposition as a candidate for data summary via
extensive theoretical and empirical analysis

Q1: Whether a classical and simple approach such as QR decomposition could (theoretically) accurately
solve and accelerate common LMS solvers compared to the above state of the art recursive and

clustering-based fusion algorithm?

Q2: Whether a numerically stable algorithm could generate accurate distributed sketches via exact factoriza-
tion on streaming data?
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Householder-QR

Theorem 2.1 (Householder-QR (Golub & Van Loan, 2012)). Let matriz X € R™*?¢ with n > d. Householder
QR decomposition of X generates set of d Householder matrices H and an n X d upper trapezoidal matriz R.
The Householder matrices are stored as a set of d Householder reflectors V. Total memory footprint of above
factors is nd elements with time complexity of O(nd?) for n>> d.

X = QR , where, Q'0=00T=TI

memory

consumption gd)
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Householder Sketch

Theorem 2.2 (Householder Sketch). Let X € R"*¢ be the original data matriz, y € R™ be the corresponding
output label or response vector, and n > d. Let X = QR be Householder QR decomposition. Then, (R, QTy)

is a memory-efficient and theoretically accurate sketch of original data (X,y) such that XTX = RTR, and
d(d+3) )
2

has memory footprint of ( elements, computed in time O(nd?).

7T
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Householder Sketch
(summary)

I

{X,y} {R.Q"y}
memory ,
consumption ~ 90(nd) 0(d”)
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Householder Sketch for LMS

Least-Mean-Squares

min (| Xw — y]l2) + g(w).

min f([|QRw — yl|2) + g(w).

Xw — yll2 = |QRw — yl|2 = [|QRw —~ QQ"y]2 = [ Q]2 [Rw — Q7y[l2 = [Rw — Q]

_________________________ >,

Accurate Sketch LMS-QR)

R'R = X'X W
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Distributed Householder Sketches

Theorem 3.1 (Distributed Householder-QR (Dass et al., 2018)). Let X = (X{|...|X})”, where, X; € R7*d
be local data matriz of parallel worker, i =1,...,p, where n > d, and, n = pn. Let, X; = Q;R; be constructed
via local HOUSEHOLDER-QR (see Algorithm 1) for each i = 1,...,p, in parallel. Then, X = QR for
the complete data matriz can be constructed exactly, such that Q = diag(Q1,...,Qp)Qm, and R = Ry,
where Rsiack = Qum Ry via another HOUSEHOLDER-QR on Rstack = (Rﬂ ...|RZ)T gathered from all
workers. The above DISTRIBUTED HOUSEHOLDER-QR has a computational time complezity of O(%d2), with

a communicated data volume of (@) elements by each worker.

(Xl\ (Q1R1\ (Rl\ (Rl\

X2 Q2R2
— diag(Ql, ceey QP)

\XP/ \QPRP)

X =diag(Qi,..., Q)R




Householder Sketch
(local summary)

Houscholder Sketch
(local summary)

Householder Sketch
(local summary)

{Xi, yi} {By, Q"y;}

memory
consumption ~ 0(nd/p) o(d?)
per worker

o
——,
QR
Householder Sketch
(global summary)

v

{B’stack » Y. stack} {R’ QTy 1:k}

O(pd?) 0(d?)

p: #workers
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Results (1/3

Sequential training time on data n x d
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Results (2/3)

Stage 1: Distributed Householder-QR Stage 2: Distributed Multiply-Qc and RIDGE

Y =1 Compute (local QR) E=3 Compute (Q'y)
N q B Compute (master QR) B Compute (Ridge)
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Execution Time breakdown of DISTRIBUTED RIDGE-QR (on 10M x 10)
with zoomed insets depicting communication time
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Results (3/3)

LINREG-BOOST
—— LINREG-QR
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Accuracy (x107!!) comparison of LINREG-QR and LINREG-BOOST on
Household Power Consumption dataset (~ 2M X 8),
w* 1s solution from scikit-learn LinearRegression
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Conclusions

Claim 1: QR decomposition is relatively time-consuming
FALSE
=> Householder sketch is more memory-efficient and
accelerates common LMS solvers in scikit-learn library up to
100x-400x, and outperforms the strong baseline LMS- BOOST
by 10x-100x with similar numerical stability.

Claim 2: Qr decomposition is unsuitable for exact factorization for streaming data

FALSE

=> The distributed implementation generates accurate distributed
sketches and achieves linear scalability with negligible
communication overhead for large sample size and dimension
across multiple worker nodes.
AM
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