Conservative Objective Models For Offline Model-Based Optimization Brandon Trabucco¹ *, Aviral Kumar¹ *, Xinyang Geng¹, Sergey Levine^{1,2} ¹UC Berkeley ² Google AI Research (* Equal Contribution) #### Problem Statement We propose Conservative Objective Models, a simple method for Offline Model-Based Optimization (MBO) that learns a robust model of a black-box score function using supervised learning. The goal of MBO is to find an optimal design \mathbf{x}^* that maximizes the value of an unknown black-box score function. **Offline** means that a <u>fixed dataset</u> of black-box function evaluations is provided, and no new function evaluations may be collected. #### Overestimation in Offline MBO Even if we can train accurate predictive models, optimizing them is hard. If we directly optimize $f(\mathbf{x})$, the optimizer can get "fooled" by erroneous predictions of the model and produce adversarial inputs. original MBO output # Learned Model **Designs** Supervised Adversarial Example Generation #### COMs Are Stable Optimizers - COMs reach solutions that remain at higher performance for longer, indicating that COMs are less sensitive to varying numbers of gradient ascent steps (a hyperparameter) performed during optimization. - The naive gradient ascent optimizer using a single predictive model tends to produce degenerate solutions, and performance under the real objective eventually collapses to a low number. ## **Experimental Results** | | GFP | TF Bind 8 | UTR | # Optimal | Norm. avg. perf. | |--|---|---|---|---|------------------| | \mathcal{D} (best) | 0.789 | 0.439 | 0.593 | 1 | | | Auto. CbAS | 0.865 ± 0.000 | 0.910 ± 0.044 | 0.691 ± 0.012 | 1/7 | 0.687 | | CbAS | 0.865 ± 0.000 | 0.927 ± 0.051 | 0.694 ± 0.010 | 3/7 | 0.699 | | BO-qEI | 0.254 ± 0.352 | 0.798 ± 0.083 | 0.684 ± 0.000 | 0/7 | 0.629 | | CMA-ES | 0.054 ± 0.002 | 0.953 ± 0.022 | 0.707 ± 0.014 | 2/7 | 0.674 | | Grad. | 0.864 ± 0.001 | 0.977 ± 0.025 | 0.695 ± 0.013 | 3/7 | 0.750 | | Grad. Min | 0.864 ± 0.000 | 0.984 ± 0.012 | 0.696 ± 0.009 | 3/7 | 0.829 | | Grad. Mean | 0.864 ± 0.000 | 0.986 ± 0.012 | 0.693 ± 0.010 | 2/7 | 0.852 | | MINs | 0.865 ± 0.001 | 0.905 ± 0.052 | 0.697 ± 0.010 | 4/7 | 0.745 | | REINFORCE | 0.865 ± 0.000 | 0.948 ± 0.028 | 0.688 ± 0.010 | 1/7 | 0.541 | | COMs (Ours) | 0.864 ± 0.000 | 0.945 ± 0.033 | 0.699 ± 0.011 | 4/7 | 0.985 | | | | 21 | | | | | | Superconductor | Ant Morphology | D'Kitty Morphology | Hopper Controller | | | \mathcal{D} (best) | Superconductor 0.399 | Ant Morphology 0.565 | D'Kitty Morphology 0.884 | Hopper Controller | | | D (best) Auto. CbAS | | 1 00 | | | | | | 0.399 | 0.565 | 0.884 | 1.0 | | | Auto. CbAS | 0.399 0.421 ± 0.045 | 0.565 0.882 ± 0.045 | 0.884 0.906 ± 0.006 | 0.137 ± 0.005 | | | Auto. CbAS
CbAS | 0.399 0.421 ± 0.045 0.503 ± 0.069 | 0.565 0.882 ± 0.045 0.876 ± 0.031 | 0.884 0.906 ± 0.006 0.892 ± 0.008 | $\begin{array}{c} 1.0 \\ 0.137 \pm 0.005 \\ 0.141 \pm 0.012 \end{array}$ | | | Auto. CbAS
CbAS
BO-qEI | 0.399 0.421 ± 0.045 0.503 ± 0.069 0.402 ± 0.034 | 0.565 0.882 ± 0.045 0.876 ± 0.031 0.819 ± 0.000 | 0.884 0.906 ± 0.006 0.892 ± 0.008 0.896 ± 0.000 | 1.0 0.137 ± 0.005 0.141 ± 0.012 0.550 ± 0.118 | | | Auto. CbAS
CbAS
BO-qEI
CMA-ES | 0.399 0.421 ± 0.045 0.503 ± 0.069 0.402 ± 0.034 0.465 ± 0.024 | 0.565 0.882 ± 0.045 0.876 ± 0.031 0.819 ± 0.000 1.214 ± 0.732 | 0.884 0.906 ± 0.006 0.892 ± 0.008 0.896 ± 0.000 0.724 ± 0.001 | 1.0 0.137 ± 0.005 0.141 ± 0.012 0.550 ± 0.118 0.604 ± 0.215 | | | Auto. CbAS CbAS BO-qEI CMA-ES Grad. | 0.399 0.421 ± 0.045 0.503 ± 0.069 0.402 ± 0.034 0.465 ± 0.024 0.518 ± 0.024 | 0.565 0.882 ± 0.045 0.876 ± 0.031 0.819 ± 0.000 1.214 ± 0.732 0.293 ± 0.023 | 0.884 0.906 ± 0.006 0.892 ± 0.008 0.896 ± 0.000 0.724 ± 0.001 0.874 ± 0.022 | 1.0 0.137 ± 0.005 0.141 ± 0.012 0.550 ± 0.118 0.604 ± 0.215 1.035 ± 0.482 | | | Auto. CbAS CbAS BO-qEI CMA-ES Grad. Grad. Min | 0.399 0.421 ± 0.045 0.503 ± 0.069 0.402 ± 0.034 0.465 ± 0.024 0.518 ± 0.024 0.506 ± 0.009 | 0.565 0.882 ± 0.045 0.876 ± 0.031 0.819 ± 0.000 1.214 ± 0.732 0.293 ± 0.023 0.479 ± 0.064 | 0.884 0.906 ± 0.006 0.892 ± 0.008 0.896 ± 0.000 0.724 ± 0.001 0.874 ± 0.022 0.889 ± 0.011 | 1.0 0.137 ± 0.005 0.141 ± 0.012 0.550 ± 0.118 0.604 ± 0.215 1.035 ± 0.482 1.391 ± 0.589 | | | Auto. CbAS CbAS BO-qEI CMA-ES Grad. Grad. Min Grad. Mean | 0.399 0.421 ± 0.045 0.503 ± 0.069 0.402 ± 0.034 0.465 ± 0.024 0.518 ± 0.024 0.506 ± 0.009 0.499 ± 0.017 | 0.565 0.882 ± 0.045 0.876 ± 0.031 0.819 ± 0.000 1.214 ± 0.732 0.293 ± 0.023 0.479 ± 0.064 0.445 ± 0.080 | 0.884 0.906 ± 0.006 0.892 ± 0.008 0.896 ± 0.000 0.724 ± 0.001 0.874 ± 0.022 0.889 ± 0.011 0.892 ± 0.011 | 1.0 0.137 ± 0.005 0.141 ± 0.012 0.550 ± 0.118 0.604 ± 0.215 1.035 ± 0.482 1.391 ± 0.589 1.586 ± 0.454 | | - COMs mitigate finding adversarial solutions to optimization problems by learning conservative predictive models. - COMs are **simple** to tune, require training only a single predictive model of the objective, and shared hyperparameters uniformly across all discrete and continuous tasks respectively. - COMs are 16% better than the next best Offline MBO method. COMs are resilient to small evaluation budgets, and are nearly invariant down to budgets of size 50, consistently producing high performing **x***. ## **Conservatism Fixes Overestimation** COMs learn a model that underestimates the actual value of unseen designs, preventing the optimizer from being "fooled". ## COMs Algorithm - **COMs** operates in two phases: first optimizing the learned model with conservative regression, then optimizing to get x^* . - During phase one, we sample initial **x** from the dataset, and obtain solutions x* using standard gradient ascent. The model is trained to underestimate the actual value of these solutions \mathbf{x}^* . - During phase two, we sample the most promising designs in the training set, and optimize them for T_{eval} iterations. ## Future Work & Open Problems - COMs could be further improved by incorporating generative models that explicitly model the data manifold during optimization. - When using COMs, especially on small datasets, "overfitting" is an issue, and mitigating it can improve the reliability of Offline MBO. - A deeper understanding of how neural network models extrapolate could help explain why and how adversarial examples are found, and could result in more powerful optimization schemes.