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Problem Statement

Overestimation in Offline MBO

COMs Are Stable Optimizers

COMs Algorithm

Experimental Results

Future Work & Open ProblemsConservatism Fixes Overestimation

We propose Conservative Objective Models, a simple method for 
Offline Model-Based Optimization (MBO) that learns a robust model of 
a black-box score function using supervised learning.

The goal of MBO is to find an optimal design x* that maximizes the 
value of an unknown black-box score function.

Offline means that a fixed dataset of black-box function evaluations is 
provided, and no new function evaluations may be collected.

Even if we can train accurate predictive models, optimizing them is 
hard. If we directly optimize           , the optimizer can get ”fooled” by 
erroneous predictions of the model and produce adversarial inputs.

● COMs operates in two phases: first optimizing the learned model 
with conservative regression, then optimizing to get  x*.

● During phase one, we sample initial x from the dataset, and obtain 
solutions x* using standard gradient ascent. The model is trained to 
underestimate the actual value of these solutions x*.

● During phase two, we sample the most promising designs in the 
training set, and optimize them for Teval iterations.

● COMs mitigate finding adversarial solutions to optimization problems 
by learning conservative predictive models.

● COMs are simple to tune, require training only a single predictive 
model of the objective, and shared hyperparameters uniformly 
across all discrete and continuous tasks respectively.

● COMs are 16% better than the next best Offline MBO method.

● COMs reach solutions that remain at higher performance for longer, 
indicating that COMs are less sensitive to varying numbers of gradient 
ascent steps (a hyperparameter) performed during optimization.

● The naive gradient ascent optimizer using a single predictive model 
tends to produce degenerate solutions, and performance under the 
real objective eventually collapses to a low number.

● COMs could be further improved by incorporating generative models 
that explicitly model the data manifold during optimization.

● When using COMs, especially on small datasets, “overfitting” is an 
issue, and mitigating it can improve the reliability of Offline MBO.

● A deeper understanding of how neural network models extrapolate 
could help explain why and how adversarial examples are found, and 
could result in more powerful optimization schemes.

COMs learn a model that underestimates the 
actual value of unseen designs, preventing the 
optimizer from being ”fooled”.
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Penalty On Adversarial Examples

COMs are resilient to 
small evaluation 
budgets, and are nearly 
invariant down to 
budgets of size 50, 
consistently producing 
high performing x*.


