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Source: aihabitat.orgAI Habitat, Savva et al. 2019
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https://docs.google.com/file/d/1fMip1Rh6AgFgxjPTwyvgq9hnmKzD86Qd/preview


Learn to Solve a Task in Any Scenario by 
Training on a Limited Number of Task Instances

AI Habitat, Savva et al. 2019 Source: aihabitat.org
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Current Agents are Brittle

Train Environment Test Environment

 Different Backgrounds
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Problem Setting: Family of POMDPs

Different 
States

Different 
Observations

Train on a small number of environments and test on the full distribution

Same action space and reward function, different dynamics



Generalizing to New Task Instances

 Different Episode Lengths
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Common Network for the Policy and Value

Without gradients from the value function, the policy struggles to learn
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Policy-Value Asymmetry
Same Optimal Policy

Different Optimal Values

Need level-specific features to accurately estimate the value

Semantically Identical, Visually Different

Using a common representation for the policy and value can lead to overfitting

Short Episode Long Episode
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Trade-off between Generalization and Value Loss

Counterintuitive finding: models with good generalization have high value loss
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Advantage Function

Same Advantages

The advantage function is less prone to overfitting than the value function
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Policy Network Value Network

Decoupled Advantage Actor-Critic (DAAC)
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Policy Encoder Discriminator

Invariant Decoupled Advantage Actor-Critic (IDAAC)
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Decoupling the value and policy for sample efficiency: PPG (Cobbe et al. 2020)

Related Work

Data Augmentation: Cobbe et al. 2018, RAND-FM (Lee et al. 2019), RAD (Laskin 
et al. 2020), DrQ (Kostrikov et al. 2020), UCB-DrAC (Raileanu et al. 2020), Mixreg 
(Wang et al. 2020)

Other Approaches for Generalization in RL: policy distillation (Igl et al. 2019), 
automatic curricula (PLR, Jiang et al. 2020), etc.

Representation Learning: information bottleneck (Igl et al., 2019), bisimulation 
metrics (Zhang et al. 2020), unsupervised learning (Stooke et al., 2020), state 
abstractions (Agarwal et al. 2021), mutual information (Mazoure et al. 2020)
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Test Performance
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IDAAC: SOTA on Procgen and 64% better than standard RL on test environments

Results on the Procgen Benchmark
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Good Generalization and Low Value Loss
Test Score: 5.9
Value Loss: 0.2

Test Score: 8.8
Value Loss: 0.3

Test Score: 7.3
Value Loss: 0.2

The advantage does not have a linear trend, leading to better generalization

By decoupling the value and policy, DAAC achieves lower value loss
16



Agent Behavior On New Environments
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Takeaways

Predicting the value requires more information then learning the policy

Predicting advantage instead of value improves generalization

Inductive Bias: learn state representations invariant to the episode step

Using a common representation for the policy and value leads to overfitting
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Thank you!

Paper: https://arxiv.org/abs/2102.10330 
Code: https://github.com/rraileanu/idaac
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