Decoupling Value and Policy for Generalization in Reinforcement Learning

Roberta Raileanu NYU

Rob Fergus NYU

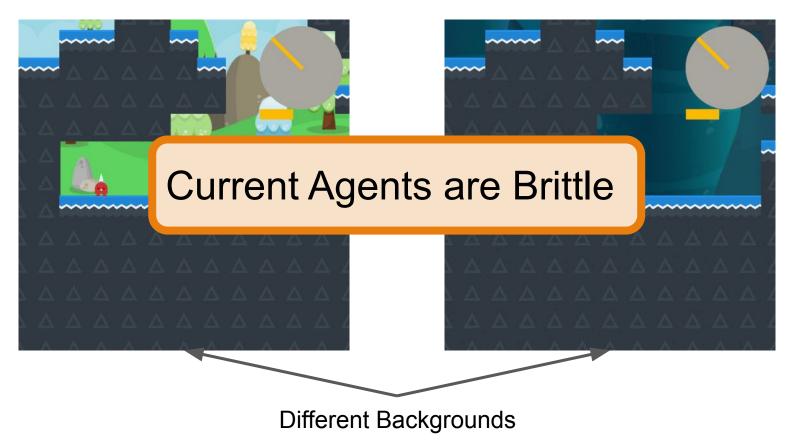
ICML 2021

Learn to Solve a Task in **Any** Scenario by Training on a **Limited** Number of Task Instances

Al Habitat, Savva et al. 2019

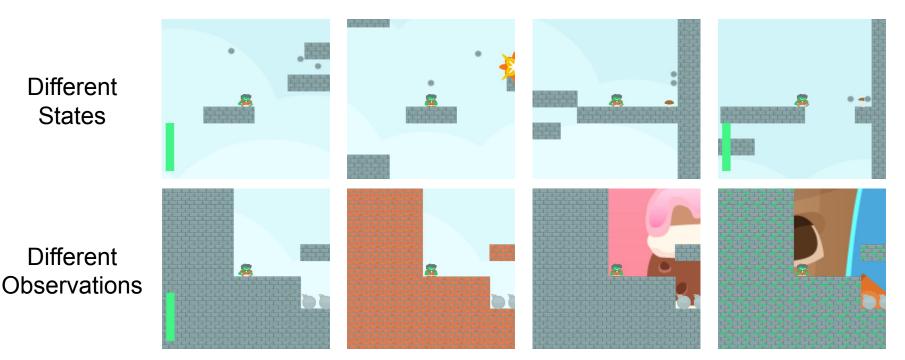
Train Environment

Test Environment



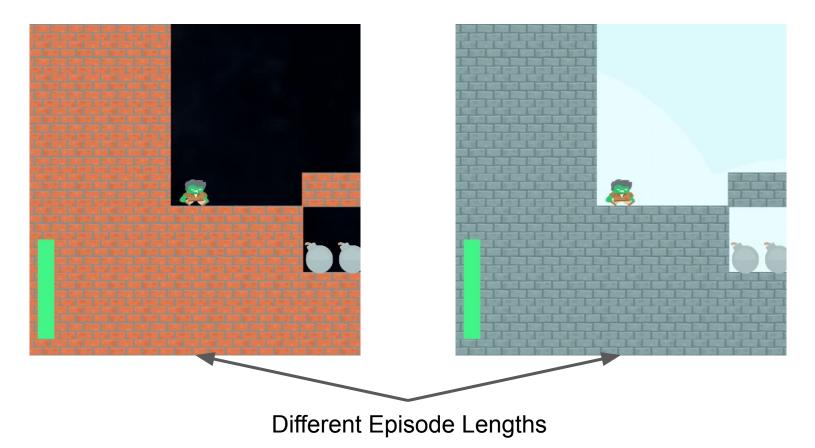
Problem Setting: Family of POMDPs

Same action space and reward function, different dynamics

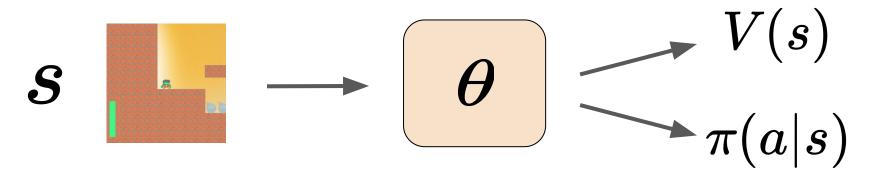


Train on a small number of environments and test on the full distribution

Generalizing to New Task Instances

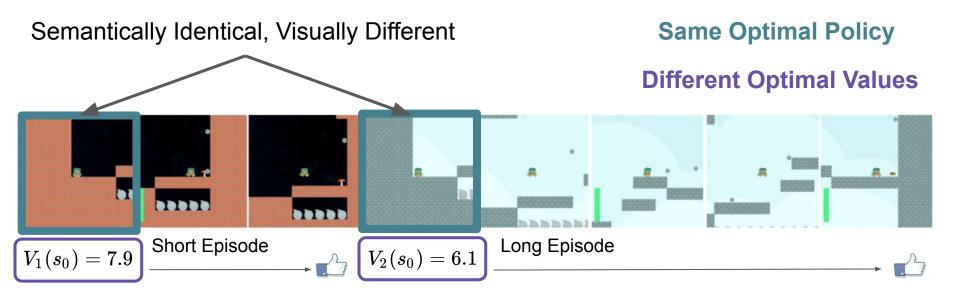


Common Network for the Policy and Value



Without gradients from the value function, the policy struggles to learn

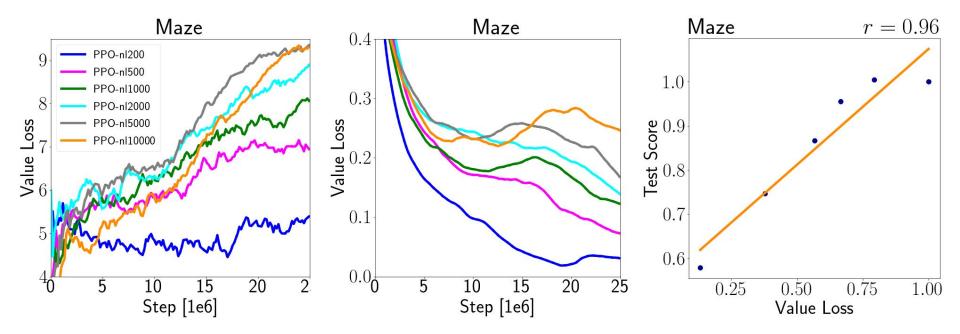
Policy-Value Asymmetry



Need level-specific features to accurately estimate the value

Using a common representation for the policy and value can lead to overfitting

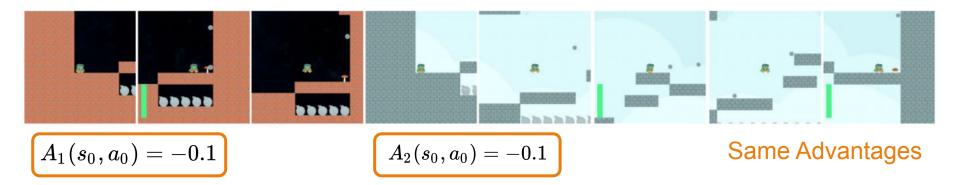
Trade-off between Generalization and Value Loss



Counterintuitive finding: models with good generalization have high value loss

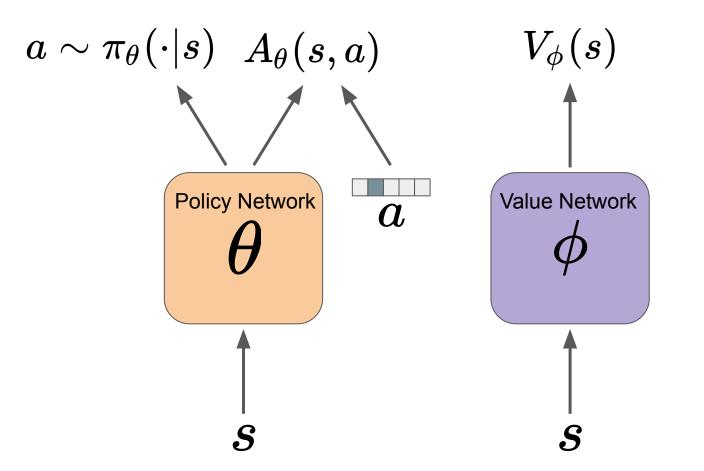
Advantage Function

$$egin{aligned} &A^{\pi}(s_t,a_t) \coloneqq Q^{\pi}(s_t,a_t) - V^{\pi}(s_t) \ &Q^{\pi}(s_t,a_t) \coloneqq \mathbb{E}_{\pi} \left[egin{aligned} & \sum_{l=0}^{H-t} \gamma^l r_{t+l} | s_t = s, a_t = a \end{aligned}
ight] &V^{\pi}(s_t) \coloneqq \mathbb{E}_{\pi} \left[egin{aligned} & \sum_{l=0}^{H-t} \gamma^l r_{t+l} | s_t = s \end{array}
ight] \end{aligned}$$

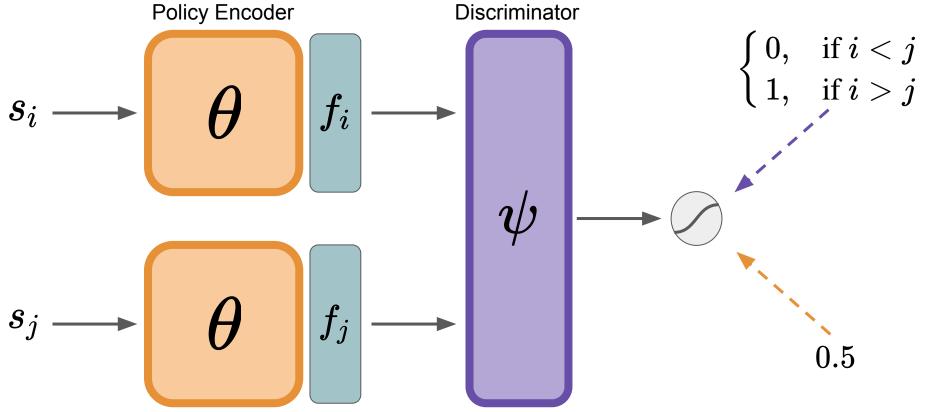


The advantage function is less prone to overfitting than the value function

Decoupled Advantage Actor-Critic (DAAC)



Invariant Decoupled Advantage Actor-Critic (IDAAC)



Related Work

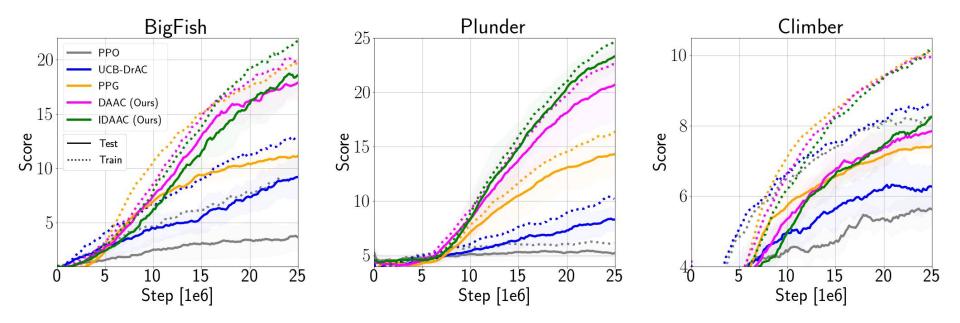
Decoupling the value and policy for sample efficiency: PPG (*Cobbe et al. 2020*)

Data Augmentation: Cobbe et al. 2018, RAND-FM (*Lee et al. 2019*), RAD (Laskin et al. 2020), DrQ (*Kostrikov et al. 2020*), UCB-DrAC (*Raileanu et al. 2020*), Mixreg (*Wang et al. 2020*)

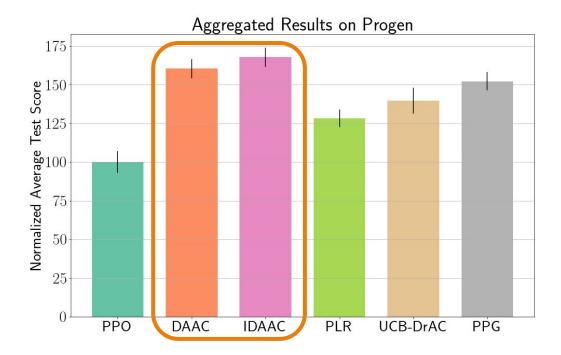
Representation Learning: information bottleneck (*Igl et al., 2019*), bisimulation metrics (*Zhang et al. 2020*), unsupervised learning (*Stooke et al., 2020*), state abstractions (*Agarwal et al. 2021*), mutual information (*Mazoure et al. 2020*)

Other Approaches for Generalization in RL: policy distillation (*Igl et al. 2019*), automatic curricula (PLR, *Jiang et al. 2020*), etc.

Test Performance

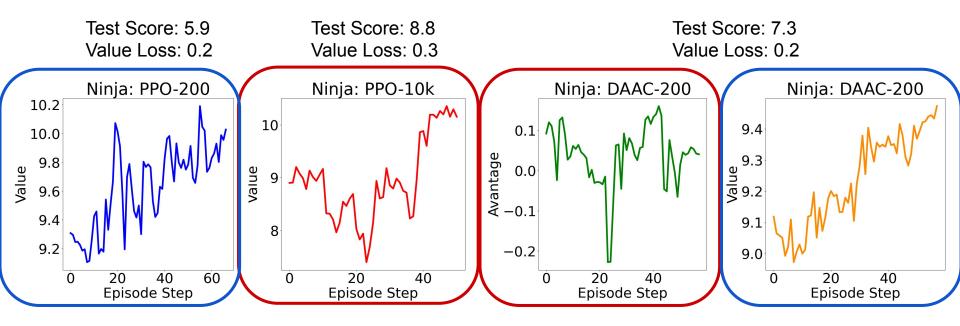


Results on the Procgen Benchmark



IDAAC: SOTA on Procgen and 64% better than standard RL on test environments

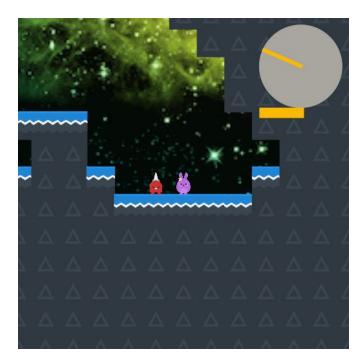
Good Generalization and Low Value Loss

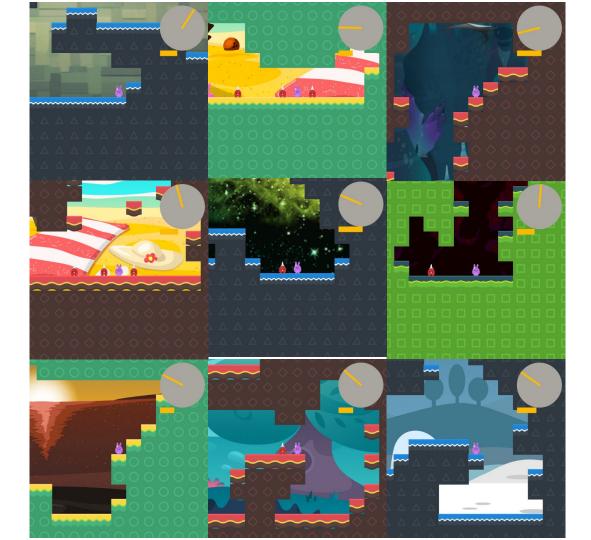


The advantage does not have a linear trend, leading to better generalization

By decoupling the value and policy, DAAC achieves lower value loss

Agent Behavior On New Environments





Takeaways

Predicting the value requires more information then learning the policy

Using a common representation for the policy and value leads to overfitting

Predicting advantage instead of value improves generalization

Inductive Bias: learn state representations invariant to the episode step

Decoupling Value and Policy for Generalization in Reinforcement Learning

Thank you!

Paper: <u>https://arxiv.org/abs/2102.10330</u> Code: <u>https://github.com/rraileanu/idaac</u>