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Energy-Based Models

 An energy-based model (EBM) is a probability model in the following
form:

e _EQ(X)

— — _Ee(x)
Po(x) 70) Z(0) [ e dx

X

* Where Ey(x) : y = R fully specifies the model so Z(0) does not need
to be modelled
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Training EBMs

« To maximize likelihood we must compute

log py(x) = — Ey(x) — log Z(0)
= — Ey(x) — log Je‘Eﬁ(x)dx

e Which is intractable

 The gradient however is simpler

« Draw samples to estimate gradient

e We can use this to train Use MCMC!
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Recent Success!

« Let £/y(x) be a deep neural network Ey(x) = — fy(x)

e How to sample?

 If data continuous, use gradient-based samplers!

€
Xy = X, + > V. fo(x) + €n, n ~ N(O,I)

 High quality image generation
« Semi-supervised learning

« OOD
e Adversarial robustness

Du and Mordatch (2020)
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Recent Success!

« Let £/y(x) be a deep neural network Ey(x) = — fy(x)

e How to sample?

 |f data discrete....?

« Many important data discrete...how to sample?
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In this work...

e New MCMC sampler for discrete distributions

 Simple approach which exploits common structure (gradients!!!)

* Increases efficiency, enables the Deep EBMs on discrete data



Discrete Sampling

/)
where

. We focus on sampling from p(x) =

. xe{0,1}Porx e {0,....K}"
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Gibbs Sampling
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 Consider this dim
« We evaluate f(x)
 ...and f(x_)) (flip i-th bit)

« Setx < x_; with probability:
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Gibbs Sampling

Pick dim i then re-sample x[i] w/ all other dims fixed

Consider this dim
We evaluate f(x)
..and f(x_;) (flip i-th bit)

Set x < x_; with probability:

AN AN AN A

o(f(x_) — f(x))

Typically fix an ordering

and iterate through

Must resample all dims

LV VA VA Y/
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Some dims are better...

 Most pixels are black

 If we propose dim in background
 Will not change — computation wasted

 If we propose dim in middle of digit
 Will not change — computation wasted

 Dims on edge will change

« Small subset of all variables! 2% on MNIST
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Choosing dimensions

« Dims most likely to flip depend on input
« Thus, sample dims from proposal g(i | x)

« To generate proposal, sample i ~ ¢g(i | x) and
set x_. = flip_dim(x, i)

l

« Accept x_; with probability

min{GXP(f(x_l) —fx ))Q((lll);)l) }
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Proposals for Discrete Sampling

How to design ¢(i | x)? Acceptance prob:

min{eXP(f(x_l) J”(X))Cj(| sk }
q(i|x)

Want f(x_;) — f(x) high to proposals have high likelihood
Want ¢(i | x) to have high entropy

Need ¢(i | x) to balance these for good sampling

J&_) = f(%) )

< JO_y) = f(x) )
exp -

T

exp
Idea: let ¢ (i | x) = =
K Z(x) D fa) — f)
2o &P




Proposals for Discrete Sampling

How to design ¢(i | x)? Acceptance prob:

min{exp(f(x_,> _ fap LD }
gi1x)

« Want f(x_,) — f(x) high to proposals have high likelihood
« Want ¢(i | x) to have high entropy

« Need ¢(i|x) to balance these for good sampling

Tempered softmax over
exp <f(x—i) — f(%) )
Idea: let ¢_(i | x) = 7 ) _ f(x_,-)T— ()
X

2

For possible i



Choosing 7

 Rewrite acceptance probability w.r.t g (i | x)
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min{eXp(f(x_l) f(x))Q(| i) }
qli|x)

| 2 20 |
=min § exp | (1= ) (o) —f@) | =

Set 7 = 2 to cancel
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Choosing 7

 Rewrite acceptance probability w.r.t g,(i | x)

min{exp(f(x_p _ fap LD }
q(i|x)

: { Z(x_i) }
= min N
Z(x)

T

Should be
nhear 1




Choosing 7

 Rewrite acceptance probability w.r.t ¢, (i | x)

min{eXp(f(x_l) Jf(x))q(| ) }
q(i|x)

: { Z(x_i) }
= min N
Z(x)

« Shown to be near optimal proposal which makes local moves (Zanella
(2020))
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Difference Functions

Optimal proposal

( Jx_) — fx) )
cXp >

Z(x)

g(i|x) =

To sample we must compute f(x_,) — f(x) forall i € [1,..., D]

This means O(D) function evals

Slow if D big...



A surprisingly common structure

Bernoulli:
Categorical:

Ising:

Potts:

RBM:

HMM:

Deep EBM:

log p(x) = 0x —logZ
log p(x) = 0'x —log Z

logp(x) = x"Wx + blx—logZ

D
log p(x) = Z h!x; + Z x; Jyx; —log Z
i=1 ij

log p(x) = Z softplus(Wx + b). + clx

[
T

log p(x|y) = thAxt—l +
=1

log p(x) = fo(x) — log Z

(W Txt _ yt)z

G2



A surprisingly common structure

Bernoulli: log p(x) = 6x —logZ

These are all continuous,
Categorical: log p(x) = 0'x —log Z differentiable functions of
real-valued inputs!

Ising: log p(x) = xIWx + b'x —logZ
D
Potts: log p(x) = Z h!x; + Z xiTJljxj —logZ
i—1 ij Discrete structure is

RBM: log p(x) = softplus(Wx + b). + Ty created by restricting
=P Z l inputto {0,1} C R

[
T

HMM: log p(x|y) = ) xAx,_; +
=1

Deep EBM: log p(x) = fy(x) —log Z

(W Txt _ yt)z

c2



Exploiting a surprisingly common structure

« We can use Taylor-series to estimate

JO_) = (x_; — x)Tfo (x)



Exploiting a surprisingly common structure

« We can use Taylor-series to estimate

JO_) = (x_; — x)Tfo (x)

For binary data, we estimate f(x_;) — f(x) for all i:
dv) = - (2x-1) 0V, f(x)

Where d(x)[i] = f(x_) — f(x)

« Similar expression for categorical data



Gibbs With Gradients

* We propose a new sampler for discrete distributions
« We do Metropolis-Hastings with a proposal g(i | x)

 The proposal approximates:

( Jx_) = fx) )
cXp >

Z(x)

q(i|x) =
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Gibbs With Gradients

* We propose a new sampler for discrete distributions
« We do Metropolis-Hastings with a proposal g(i | x)

 The proposal approximates:

(f(x—i) — f(x) )
exp >
1lx) =
q(i | x) 709
 Using a Taylor-series
( (i =0V, f) )
eXp >
(i]x) = .
1 Z(x)

e Using O(1) function evaluations!



Gibbs With Gradients (visually)

Target Distribution Underlying Continuous Function
O—CO—C0O—00 90— |
P—O—0—0—0—0 T cton
Oo—O0—0O—0O) i—O—C —
—0—0 Q Cj—() Iikel|iEhSc§i(r)rc]ja:aetios
—0—0O0—() I O—O

Take softmax to obtain
proposal in original
discrete space

Updated Sample Proposal Distribution

O—CO—CO—10—0 90—
O—0—0—10—0—=19 Sample from proposal
—0—0—0 000 ¢ t
Metropolis-Hastings
o—Oo—O—() ° ( ) Step —@ <>
& —0—0— O Y O ©




Gibbs With Gradients (pseudo-code)

Algorithm 1 Gibbs With Gradients

Input: unnormalized log-prob f(-), current sample x
Compute d(x) {Eq. 3 if binary, Eq. 4 if categorical.}

Compute ¢(i|z) = Categorical (Softmax ( (2 )))
Sample i ~ q(¢|x)
r' = flipdim(z,?)

. . d‘ :L’/
Compute q(i|z’) = Categorical (Softmax ( (2 )))
Accept with probability:

min (exp(f (') ~ £(2) 210, 1)

q(i|)




RBM Sampling




Ising Denoising

100x100 = 10,000 Variables!

Gibbs

Ground Truth

GWG




Training EBMs

Recall Vylog p(x) = — VyLy(x) + E, )| VgEy(¥)]

So MCMC sampling can enable parameter inference for EBMs

 Protein Contact Prediction with Potts models

* Deep EBMs for discrete images
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A protein x is a sequences of D amino acids
x; € {l1,...,20}

Want to know which x; and x; contact when
folded

Train Potts model:

D
i=1 ij

Model J matrix learns interactions

Make predictions with interaction strength

Protein Contact Prediction

J

Strong
interaction

Folded Protein



Protein Contact Prediction

« Compare:

« Maximum likelihood using Gibbs, GWG

 Pseudo-likelihood Maximization (PLM) (standard practice)

D = 348 D = 882
OPSD BOVIN CADH1 HUMAN
1.00 - 1.00 -
0 o5 0.95 -
0.90 -
0.90 -
— = 0.85 1
O O
2 0.85 - & 0.80 -
0.80 1 — Gibbs 0.75 91— Gibbs
e | awe 0.701 — GWG
—— PLM bes | — PLM
0 100 200 0 100 200 300

# Contacts # Contacts



Deep EBMs for Discrete Data

i)
Z

. Recent successful EBMs use neural network energy: p,(x) =

« We train Deep ResNet EBMs on binary and categorical image data
 Binary pixel values are O, 1
 For categorical each pixel is 1-0f-256 way categorical

 This means 256 function evals for 1 step of Gibbs!



Deep EBMs for Discrete Data

 Train with PCD
 Outperforms VAEs, RBM, and Deep belief net in log-likelihood

« GWG greatly outperforms Gibbs on binary data and Gibbs is completely unable to train
because of high cost per-iteration

VAE VAE EBM EBM

Data Type Dataset (MLP) (Conv) (GWG) (Gibbs) RBM DBN
- Static MNIST 86.05 -82.41 -80.01 -117.17 -8639  -85.67
t Dynamic MNIST | -82.42 -80.40 -80.51 -121.19  — _
(log-likelihood ) | Ommiglo! -103.52  97.65 -94.72 -142.06 -100.47 -100.78
08" 00 Caltech Silhouettes | -112.08 -106.35 -9620 -163.50  — _
Categorical Frey Faces 4.61 4.49 4.65 — — -

(bits/dim J) Histopathology 5.82 5.59 5.08 — — —




Deep EBMs for Discrete Data

 Train with PCD
 Outperforms VAEs, RBM, and Deep belief net in log-likelihood

« GWG greatly outperforms Gibbs on binary data and Gibbs is completely unable to train
because of high cost per-iteration

Fibl&»iﬁll Ii HM A AL
Oou.mttilk hi-mo--r?a'r "“."




Additional results

« See paper for additional results on:
« Text EBMs
e Structure inference in Ising models

 Additional sampling experiments



Next Steps

 Improvements for large categoricals (text)

 New approximations when gradients can’t be computed

 Apply gradients to:
 Discrete Score Matching

 Discrete Stein Discrepancies

* Integrate into probabilistic programming frameworks



Thanks!

* Thanks for having me, much love to my co-authors!

e Code available: github.com/wgrathwohl/GWG release

e You can find me at

e @wgrathwohl or

e wgrathwohl@cs.toronto.edu
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Kevin Swersky Milad Hashemi David Duvenaud Chris Maddison
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