Oops | took a gradient!

Scalable sampling for discrete distributions

ICML 2021
V

VECTOR INSTITUTE

Will Grathwohl
Kevin Swersky
Milad Hashemi
David Duvenaud
Chris J. Maddison

Energy-Based Models

 An energy-based model (EBM) is a probability model in the following
form:

e _EQ(X)

— — _Ee(x)
Po(x) 70) Z(0) [e dx

X

* Where Ey(x) : y = R fully specifies the model so Z(0) does not need
to be modelled

Training EBMs

« To maximize likelihood we must compute

log py(x) = — Ey(x) — log Z(0)
= — Ey(x) — log Je‘Eﬁ(x)dx

Training EBMs

« To maximize likelihood we must compute

log py(x) = — Ey(x) — log Z(0)
= — Ey(x) — log Je‘EH(x)dx

e Which is intractable

Training EBMs

« To maximize likelihood we must compute

log py(x) = — Ey(x) — log Z(0)
= — Ey(x) — log Je_Ee(x)dx

e Which is intractable

 The gradient however is simpler

Training EBMs

To maximize likelihood we must compute

log py(x) = — Ey(x) — log Z(0)
= — Ey(x) — log Je_Ee(x)dx

Which is intractable

The gradient however is simpler

Draw samples to estimate gradient

We can use this to train

Training EBMs

« To maximize likelihood we must compute

log py(x) = — Ey(x) — log Z(0)
= — Ey(x) — log Je‘Eﬁ(x)dx

e Which is intractable

 The gradient however is simpler

« Draw samples to estimate gradient

e We can use this to train Use MCMC!

Recent Success!

« Let £/y(x) be a deep neural network Ey(x) = — fy(x)

e How to sample?

Recent Success!

« Let £/y(x) be a deep neural network Ey(x) = — fy(x)

e How to sample?

e |f data continuous, use gradient-based samplers!

€
Xy = X, + > V. fo(x) + €n, n ~ N(O,I)

Recent Success!

« Let £/y(x) be a deep neural network Ey(x) = — fy(x)

e How to sample?

 If data continuous, use gradient-based samplers!

€
Xy = X, + > V. fo(x) + €n, n ~ N(O,I)

 High quality image generation
« Semi-supervised learning

« OOD
e Adversarial robustness

Du and Mordatch (2020)

Recent Success!

« Let £/y(x) be a deep neural network Ey(x) = — fy(x)

e How to sample?

 |f data discrete....?

Recent Success!

« Let £/y(x) be a deep neural network Ey(x) = — fy(x)

e How to sample?

 |f data discrete....?

« Many important data discrete...how to sample?

Text

:“The”, “Cat”, “Sat”:
:“The”, “dog”, “Sat”:

:“The”, “dog”, “ate”:

/8l Country Bd salesperson B order Date B orderip B units Ed

2

00 ~N O s W

9

10
11
12
13
14
15
16

17

USA
UK

UK

USA
USA
UK

USA
USA
USA
USA
USA
USA
USA
UK

USA
USA

Tabular Data

Fuller
Gloucester
Bromley
Finchley
Finchley
Gillingham
Finchley
Callahan
Fuller
Fuller
Coghill
Finchley
Callahan
Rayleigh
Callahan
Farnham

1/01/2011
2/01/2011
2/01/2011
3/01/2011
3/01/2011
3/01/2011
6/01/2011
8/01/2011
8/01/2011
9/01/2011
9/01/2011
10/01/2011
10/01/2011
13/01/2011
14/01/2011
14/01/2011

10392
10397
10771
10393
10394
10395
10396
10399
10404
10398
10403
10401
10402
10406
10408
10409

13
17
18
16
10

9

7
17

7
11
18

7
11
15
10
19

Proteins

Ingraham and Marks (2017)

Molecules

~0

QED=063

e
\N
H

QED=061

el

QED=060

Hataya et al. (2021)

In this work...

e New MCMC sampler for discrete distributions

 Simple approach which exploits common structure (gradients!!!)

* Increases efficiency, enables the Deep EBMs on discrete data

Discrete Sampling

/)
where

. We focus on sampling from p(x) =

. xe{0,1}Porx e {0,....K}"

Gibbs Sampling

« Pick dim i then re-sample x|i] w/ all other dims fixed

Gibbs Sampling

« Pick dim i then re-sample x|i] w/ all other dims fixed

e Consider this dim

Gibbs Sampling

« Pick dim i then re-sample x|i] w/ all other dims fixed

e Consider this dim

« We evaluate f(x)

Gibbs Sampling

« Pick dim i then re-sample x|i] w/ all other dims fixed
 Consider this dim
(.I !.)

« We evaluate f(x)

 ...and f(x_)) (flip i-th bit)

Gibbs Sampling

Pick dim i then re-sample x[i] w/ all other dims fixed

Consider this dim

We evaluate f(x)

..and f(x_;) (flip i-th bit)

Set x < x_; with probability:

o(f(x_) — f(x))

Gibbs Sampling

Pick dim i then re-sample x[i] w/ all other dims fixed

 Consider this dim
« We evaluate f(x)
 ...and f(x_)) (flip i-th bit)

« Setx < x_; with probability:

o(f(x_) — f(x))

e Must resample all dims

Gibbs Sampling

Pick dim i then re-sample x[i] w/ all other dims fixed

Consider this dim
We evaluate f(x)
..and f(x_;) (flip i-th bit)

Set x < x_; with probability:

AN AN AN A

o(f(x_) — f(x))

Typically fix an ordering

and iterate through

Must resample all dims

LV VA VA Y/

Some dims are better...

 Most pixels are black

Some dims are better...

 Most pixels are black

 If we propose dim in background
 Will not change — computation wasted

Some dims are better...

 Most pixels are black

 If we propose dim in background
 Will not change — computation wasted

 If we propose dim in middle of digit
 Will not change — computation wasted

Some dims are better...

 Most pixels are black

 If we propose dim in background
 Will not change — computation wasted

 If we propose dim in middle of digit
 Will not change — computation wasted

 Dims on edge will change

Some dims are better...

 Most pixels are black

 If we propose dim in background
 Will not change — computation wasted

 If we propose dim in middle of digit
 Will not change — computation wasted

 Dims on edge will change

« Small subset of all variables! 2% on MNIST

Choosing dimensions

« Dims most likely to flip depend on input

Choosing dimensions

« Dims most likely to flip depend on input
« Thus, sample dims from proposal g(i | x)

« To generate proposal, sample i ~ ¢g(i | x) and
set x_. = flip_dim(x, i)

l

« Accept x_; with probability

min{GXP(f(x_l) —fx))Q((lll);)l) }

Proposals for Discrete Sampling

« How to design ¢(i | x)? Acceptance prob:

mm{exp(f(x_,) _ fap LD }
q(i|x)

Proposals for Discrete Sampling

« How to design ¢(i | x)? Acceptance prob:

min{em(f(x_l) f(X))C](| sk }
S—— g (i]x)

« Want f(x_;) — f(x) high to proposals have high likelihood

Proposals for Discrete Sampling

« How to design ¢(i | x)? Acceptance prob:

min{eXp(f(x_l) f(X))q(|) }
qli|x)

« Want f(x_;) — f(x) high to proposals have high likelihood

« Want ¢(i | x) to have high entropy

Proposals for Discrete Sampling

« How to design ¢(i | x)? Acceptance prob:

min{eXp(f(x_l) f(X))q(|) }
q(i|x)

« Want f(x_;) — f(x) high to proposals have high likelihood
« Want ¢(i | x) to have high entropy

« Need ¢(i|x) to balance these for good sampling

Proposals for Discrete Sampling

How to design ¢(i | x)? Acceptance prob:

min{eXP(f(x_l) J”(X))Cj(| sk }
q(i|x)

Want f(x_;) — f(x) high to proposals have high likelihood
Want ¢(i | x) to have high entropy

Need ¢(i | x) to balance these for good sampling

J&_) = f(%))

< JO_y) = f(x))
exp -

T

exp
Idea: let ¢ (i | x) = =
K Z(x) D fa) — f)
2o &P

Proposals for Discrete Sampling

How to design ¢(i | x)? Acceptance prob:

min{exp(f(x_,> _ fap LD }
gi1x)

« Want f(x_,) — f(x) high to proposals have high likelihood
« Want ¢(i | x) to have high entropy

« Need ¢(i|x) to balance these for good sampling

Tempered softmax over
exp <f(x—i) — f(%))
Idea: let ¢_(i | x) = 7) _ f(x_,-)T— ()
X

2

For possible i

Choosing 7

 Rewrite acceptance probability w.r.t g (i | x)

min{eXp(f(x_l) f(x))Q(| i) }
qli|x)

| 2 20 |
=min § exp | (1=) (o) —f@) | =

Choosing 7

 Rewrite acceptance probability w.r.t g (i | x)

min{eXp(f(x_l) f(x))Q(| i) }
qli|x)

| 2 20 |
=min § exp | (1=) (o) —f@) | =

Set 7 = 2 to cancel

Choosing 7

 Rewrite acceptance probability w.r.t ¢, (i | x)

min{exp(f(x_) _ fap LD }
q(i|x)

: { Z(x_i) }
= min N
Z(x)

Choosing 7

 Rewrite acceptance probability w.r.t g,(i | x)

min{exp(f(x_p _ fap LD }
q(i|x)

: { Z(x_i) }
= min N
Z(x)

T

Should be
nhear 1

Choosing 7

 Rewrite acceptance probability w.r.t ¢, (i | x)

min{eXp(f(x_l) Jf(x))q(|) }
q(i|x)

: { Z(x_i) }
= min N
Z(x)

« Shown to be near optimal proposal which makes local moves (Zanella
(2020))

Difference Functions

 Optimal proposal

(Jx_) — fx))
cXp >

g(i|x) = 709

Difference Functions

 Optimal proposal

(Jx_) — fx))
cXp >

Z(x)

g(i|x) =

 To sample we must compute f(x_,) — f(x) foralli € [1,..., D]

« This means O(D) function evals

Difference Functions

Optimal proposal

(Jx_) — fx))
cXp >

Z(x)

g(i|x) =

To sample we must compute f(x_,) — f(x) forall i € [1,..., D]

This means O(D) function evals

Slow if D big...

A surprisingly common structure

Bernoulli:
Categorical:

Ising:

Potts:

RBM:

HMM:

Deep EBM:

log p(x) = 0x —logZ
log p(x) = 0'x —log Z

logp(x) = x"Wx + blx—logZ

D
log p(x) = Z h!x; + Z x; Jyx; —log Z
i=1 ij

log p(x) = Z softplus(Wx + b). + clx

[
T

log p(x|y) = thAxt—l +
=1

log p(x) = fo(x) — log Z

(W Txt _ yt)z

G2

A surprisingly common structure

Bernoulli: log p(x) = 6x —logZ

These are all continuous,
Categorical: log p(x) = 0'x —log Z differentiable functions of
real-valued inputs!

Ising: log p(x) = xIWx + b'x —logZ
D
Potts: log p(x) = Z h!x; + Z xiTJljxj —logZ
i—1 ij Discrete structure is

RBM: log p(x) = softplus(Wx + b). + Ty created by restricting
=P Z l inputto {0,1} C R

[
T

HMM: log p(x|y) =) xAx,_; +
=1

Deep EBM: log p(x) = fy(x) —log Z

(W Txt _ yt)z

c2

Exploiting a surprisingly common structure

« We can use Taylor-series to estimate

JO_) = (x_; — x)Tfo (x)

Exploiting a surprisingly common structure

« We can use Taylor-series to estimate

JO_) = (x_; — x)Tfo (x)

For binary data, we estimate f(x_;) — f(x) for all i:
dv) = - (2x-1) 0V, f(x)

Where d(x)[i] = f(x_) — f(x)

« Similar expression for categorical data

Gibbs With Gradients

* We propose a new sampler for discrete distributions
« We do Metropolis-Hastings with a proposal g(i | x)

 The proposal approximates:

(Jx_) = fx))
cXp >

Z(x)

q(i|x) =

Gibbs With Gradients

We propose a new sampler for discrete distributions

We do Metropolis-Hastings with a proposal g(i | x)

The proposal approximates:

(f(x—i) — f(x))
exp >
1lx) =
q(i | x) 709
Using a Taylor-series
((i =0V, f))
eXp >
(i]x) = .
! Z()

Using O(1) function evaluations!

Gibbs With Gradients

* We propose a new sampler for discrete distributions
« We do Metropolis-Hastings with a proposal g(i | x)

 The proposal approximates:

(f(x—i) — f(x))
exp >
1lx) =
q(i | x) 709
 Using a Taylor-series
((i =0V, f))
eXp >
(i]x) = .
1 Z(x)

e Using O(1) function evaluations!

Gibbs With Gradients (visually)

Target Distribution Underlying Continuous Function
O—CO—C0O—00 90— |
P—O—0—0—0—0 T cton
Oo—O0—0O—0O) i—O—C —
—0—0 Q Cj—() Iikel|iEhSc§i(r)rc]ja:aetios
—0—0O0—() I O—O

Take softmax to obtain
proposal in original
discrete space

Updated Sample Proposal Distribution

O—CO—CO—10—0 90—
O—0—0—10—0—=19 Sample from proposal
—0—0—0 000 ¢ t
Metropolis-Hastings
o—Oo—O—() ° () Step —@ <>
& —0—0— O Y O ©

Gibbs With Gradients (pseudo-code)

Algorithm 1 Gibbs With Gradients

Input: unnormalized log-prob f(-), current sample x
Compute d(x) {Eq. 3 if binary, Eq. 4 if categorical.}

Compute ¢(i|z) = Categorical (Softmax ((2)))
Sample i ~ q(¢|x)
r' = flipdim(z,?)

. . d‘ :L’/
Compute q(i|z’) = Categorical (Softmax ((2)))
Accept with probability:

min (exp(f (') ~ £(2) 210, 1)

q(i|)

RBM Sampling

Ising Denoising

100x100 = 10,000 Variables!

Gibbs

Ground Truth

GWG

Training EBMs

Recall Vylog p(x) = — VyLy(x) + E,)| VgEy(¥)]

So MCMC sampling can enable parameter inference for EBMs

 Protein Contact Prediction with Potts models

* Deep EBMs for discrete images

Protein Contact Prediction

A protein x is a sequences of D amino acids
x; € {l1,...,20} Amino Acid Sequence

Want to know which x; and x; contact when
folded

Folded Protein

Protein Contact Prediction

A protein x is a sequences of D amino acids
x; € {l1,...,20} Amino Acid Sequence

Want to know which x; and x; contact when
folded

Train Potts model: l

D
i=1 ij

Folded Protein

Protein Contact Prediction

A protein x is a sequences of D amino acids J
x; € {l1,...,20}

Want to know which x; and x; contact when
folded

Train Potts model:

D
i=1 ij

Model J matrix learns interactions

Folded Protein

A protein x is a sequences of D amino acids
x; € {l1,...,20}

Want to know which x; and x; contact when
folded

Train Potts model:

D
i=1 ij

Model J matrix learns interactions

Make predictions with interaction strength

Protein Contact Prediction

J

\[o)

interaction

Folded Protein

A protein x is a sequences of D amino acids
x; € {l1,...,20}

Want to know which x; and x; contact when
folded

Train Potts model:

D
i=1 ij

Model J matrix learns interactions

Make predictions with interaction strength

Protein Contact Prediction

J

Strong
interaction

Folded Protein

Protein Contact Prediction

« Compare:

« Maximum likelihood using Gibbs, GWG

 Pseudo-likelihood Maximization (PLM) (standard practice)

D = 348 D = 882
OPSD BOVIN CADH1 HUMAN
1.00 - 1.00 -
0 o5 0.95 -
0.90 -
0.90 -
— = 0.85 1
O O
2 0.85 - & 0.80 -
0.80 1 — Gibbs 0.75 91— Gibbs
e | awe 0.701 — GWG
—— PLM bes | — PLM
0 100 200 0 100 200 300

Contacts # Contacts

Deep EBMs for Discrete Data

i)
Z

. Recent successful EBMs use neural network energy: p,(x) =

« We train Deep ResNet EBMs on binary and categorical image data
 Binary pixel values are O, 1
 For categorical each pixel is 1-0f-256 way categorical

 This means 256 function evals for 1 step of Gibbs!

Deep EBMs for Discrete Data

 Train with PCD
 Outperforms VAEs, RBM, and Deep belief net in log-likelihood

« GWG greatly outperforms Gibbs on binary data and Gibbs is completely unable to train
because of high cost per-iteration

VAE VAE EBM EBM

Data Type Dataset (MLP) (Conv) (GWG) (Gibbs) RBM DBN
- Static MNIST 86.05 -82.41 -80.01 -117.17 -8639 -85.67
t Dynamic MNIST | -82.42 -80.40 -80.51 -121.19 — _
(log-likelihood) | Ommiglo! -103.52 97.65 -94.72 -142.06 -100.47 -100.78
08" 00 Caltech Silhouettes | -112.08 -106.35 -9620 -163.50 — _
Categorical Frey Faces 4.61 4.49 4.65 — — -

(bits/dim J) Histopathology 5.82 5.59 5.08 — — —

Deep EBMs for Discrete Data

 Train with PCD
 Outperforms VAEs, RBM, and Deep belief net in log-likelihood

« GWG greatly outperforms Gibbs on binary data and Gibbs is completely unable to train
because of high cost per-iteration

Fibl&»iﬁll Ii HM A AL
Oou.mttilk hi-mo--r?a'r "“."

Additional results

« See paper for additional results on:
« Text EBMs
e Structure inference in Ising models

 Additional sampling experiments

Next Steps

 Improvements for large categoricals (text)

 New approximations when gradients can’t be computed

 Apply gradients to:
 Discrete Score Matching

 Discrete Stein Discrepancies

* Integrate into probabilistic programming frameworks

Thanks!

* Thanks for having me, much love to my co-authors!

e Code available: github.com/wgrathwohl/GWG release

e You can find me at

e @wgrathwohl or

e wgrathwohl@cs.toronto.edu

" r‘ -

. Al ' . 3
- B
E . 1 li

Kevin Swersky Milad Hashemi David Duvenaud Chris Maddison

http://github.com/wgrathwohl/GWG_release

